The Mokama granites are located in the Kibara belt (KIB) and hosts tin oxide group minerals (TOGM: Sn-W), and sulfide group minerals (SGM: Cu-Zn-Fe-As). The essential of Cu mineralization (non-economic deposit) is disseminated inside the rock and consists of minerals (Raman, EPMA and metallographic microscopy) including chalcopyrite and bornite that are replaced by chalcocite and covellite, and the last also replaced later by malachite. The chemistry (XRF, LA-ICP-MS) of these peraluminous S-type leucogranites show SiO2 (71 wt% - 79 wt%), ASI (1.4 - 3.1 molar), and are enriched in Rb (681 - 1000 ppm), Ta (12–151 ppm), Sn (43 - 142 ppm), Cu (10 - 4300 ppm), Zn (60 - 740 ppm), U (2.2 - 20.7 ppm) while depleted in Zr (20 - 31 ppm), Sr (20 - 69 ppm), Hf (1.3 - 2.0 ppm), Th (2.2 - 18.9 ppm), W (9 - 113 ppm), Pb (5 - 50 ppm), Ge (5 - 10 ppm), Cs (21 - 53 ppm) and Bi (0.6 - 17.4 ppm) and low ratios of (La/Yb) N, (Gd/Yb) N, (La/Sm) N). Fluid inclusion assemblages (FIAs) hosted in quartz in the Mokama granites show ranges of salinities of 4 - 23 wt% (NaCl equivalent) and homogenization temperatures (Th) of 190°C - 550°C. A boiling assemblage in the granite suggests a fluid phase separation occurred at about 380 - 610 bars, and this corresponds to apparent paleodepths of approximately 1 - 2 km (lithostatic model) or 3 - 5 km (hydrostatic model). FIAs hosted in TOGM such as cassiterite (salinities of 2 wt% - 10 wt% and Th of 220°C - 340°C) helped set up the possible temperature limit of SGM (Cu sulfide) precipitations that are estimated below 200°C.
References
[1]
Chen, Y., Song, S., Niu, Y. and Wei, C. (2014) Melting of Continental Crust during Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone. Geochimica et Cosmochimica Acta, 132, 311-336,
https://doi.org/10.1016/j.gca.2014.02.011
[2]
Hulsbosch, N., Boiron, M.C., Dewaele, S. and Muchez, P. (2016) Fluid Fractionation of Tungsten during Granite-Pegmatite Differentiation and the Metal Source of Peribatholitic W Quartz Veins: Evidence from the Karagwe-Ankole Belt (Rwanda). Geochimica et Cosmochimica Acta, 175, 299-318.
https://doi.org/10.1016/j.gca.2015.11.020
[3]
Hulsbosch, N. and Muchez, P. (2020) Tracing Fluid Saturation during Pegmatite Differentiation by Studying the Fluid Inclusion Evolution and Multiphase Cassiterite Mineralisation of the Gatumba Pegmatite Dyke System (NW Rwanda). Lithos, 354-355, 1-26. https://doi.org/10.1016/j.lithos.2019.105285
[4]
Che, X.D., Linnen, R.L., Wang, R.C., Aseri, A. and Thibault, Y. (2013) Tungsten Solubility in Evolved Granitic Melts: An Evaluation of Magmatic Wolframite. Geochimica et Cosmochimica Acta, 106, 84-98.
https://doi.org/10.1016/j.gca.2012.12.007
[5]
Audétat, A. (2019) The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential. Economic Geology, 114, 1033-1056.
https://doi.org/10.5382/econgeo.4673
[6]
Makutu, D.K., Seo, J.H., Lee, I., Oh, J., Kang, P., Ongendangenda, A.T. and Makoka, F.M. (2023) Magmatic-Hydrothermal Fluid Processes of the Sn-W Granites in the Maniema Province of the Kibara Belt (KIB), Democratic Republic of Congo. Minerals, 13, 1-36. https://doi.org/10.3390/min13040458.
[7]
Mambwe, P., Delpomdor, F., Lavoie, S., Mukonki, P., Batumike, J. and Muchez, P. (2020) Sedimentary Evolution and Stratigraphy of the Similar to 765-740 Ma Kansuki-Mwashya Platform Succession in the Tenke-Fungurume Mining District, Democratic Republic of the Congo. Geologica Belgica, 23, 69-85.
https://doi.org/10.20341/gb.2020.022
[8]
Mambwe, P., Kipata, L., Chabu, M., Muchez, P., Lubala, T., Jebrak, M. and Delvaux, D. (2017) Sedimentology of the Shangoluwe Breccias and Timing of the Cu Mineralisation (Katanga Supergroup, D. R. of Congo). Journal of African Earth Sciences, 132, 1-15, https://doi.org/10.1016/j.jafrearsci.2017.04.017
[9]
Mambwe, P., Milan, L., Batumike, J., Lavoie, S., Jebrak, M., Kipata, L., Chabu, M., Mulongo, S., Lubala, T., Delvaux, D. and Muchez, P. (2017) Lithology, Petrography and Cu Occurrence of the Neoproterozoic Glacial Mwale Formation at the Shanika Syncline (Tenke Fungurume, Congo Copperbelt; Democratic Republic of Congo). Journal of African Earth Sciences, 129, 898-909.
https://doi.org/10.1016/j.jafrearsci.2017.02.021
[10]
Dewaele, S., Hulsbosch, N., Cryns, Y., Boyce, A., Burgess, R.A. and Muchez, P. (2016) Geological Setting and Timing of the World-Class Sn, Nb-Ta and Li Mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo). Ore Geology Reviews, 72, 373-390. https://doi.org/10.1016/j.oregeorev.2015.07.004
[11]
Hulsbosch, N. (2019) Nb-Ta-Sn-W Distribution in Granite-related Ore Systems. In: Decrée, S. and Robb, L., Eds., Ore Deposits: Origin, Exploration, and ExploitationJohn Wiley and Sons, Hoboken, 75-107.
https://doi.org/10.1002/9781119290544.ch4
[12]
Pohl, W., Biryabarema, M.A. and Lehmann, B. (2013) Early Neoproterozoic Rare Metal (Sn, Ta, W) and Gold Metallogeny of the Central Africa Region: A Review. Applied Earth Science, 122, 66-82,
https://doi.org/10.1179/1743275813Y.0000000033
[13]
Dewaele, S.; Muchez, P.; Vets, J.; Fernandez-Alonzo, M.; Tack, L. () Multiphase origin of the Cu-Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). Journal of African Earth Sciences 2006, 46, 455-469, https://doi.org/10.1016/j.jafrearsci.2006.08.002
[14]
Haest, M., Muchez, P., Dewaele, S., Boyce, A.J., von Quadt, A. and Schneider, J. (2009) Petrographic, Fluid Inclusion and Isotopic Study of the Dikulushi Cu-Ag Deposit, Katanga (DRC): Implications for Exploration. Mineralium Deposita, 44, 505-522. https://doi.org/10.1007/s00126-009-0230-x
[15]
Agangi, A., Kamenetsky, V.S. and McPhie, J. (2010) The Role of Fluorine in the Concentration and Transport of Lithophile Trace Elements in felsic Magmas: Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273, 314-325. https://doi.org/10.1016/j.chemgeo.2010.03.008
[16]
Seo, J.H., Kim, Y., Lee, T. and Guillong, M. (2021) Periodically Released Magmatic Fluids Create a Texture of Unidirectional Solidification (UST) in Ore-Forming Granite: A Fluid and Melt Inclusion Study of W-Mo Forming Sannae-Eonyang Granite, Korea. Minerals, 11, 1-22, https://doi.org/10.3390/min11080888
[17]
Bodnar, R.J.A. and Vityk, M.O. (1994) Interpretation of Microthermometric Data for H2O-NaCl Fluid Inclusions. Virginia Tech, 117-130.
[18]
Dewaele, S., DeClerq, F., Muchez, P., Schneider, J., Burgess, R., Boyce, A. and Fernandez-Alonso, M. (2010) Geology of the Cassiterite Mineralisation in the Rutongo Area, Rwanda (Central Africa): Current State of Knowledge. Geologica Belgica, 13, 91-112.
[19]
Herman, P. and Raucq, P. (1962) Données complémentaires sur les chromites du Kasai. Bulletin de la Société Belge de Géologie, de Paléontologie et d’Hydrologie, 336-357.