全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铝合金颗粒低压冷喷涂喷嘴几何参数优化设计
Optimization Design of Geometry Parameters of Low-Pressure Cold Spray Nozzle for Aluminium Particles

DOI: 10.12677/MOS.2023.126445, PP. 4905-4915

Keywords: 低压冷喷涂,喷嘴几何结构,数值仿真,喷涂精度
Low-Pressure Cold Spray
, Nozzle Geometry, Numerical Simulation, Deposition Resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

因低压冷喷涂沉积精度较低,无法实现微细化喷涂,为提高其精度,本研究目标是优化其中常用的收缩–发散–直筒型喷嘴的几何结构参数,改善气流场状态,以获得更高质量的沉积。结果表明,喉部直径是影响颗粒速度的关键参数,较大的喉部直径可以产生更高的颗粒速度。此外,发散段长度和直筒段长度也会影响颗粒速度,需要优化选择,粉末的注入角度越小,颗粒的冲击速度越小,但角度超过60度以后,对颗粒的冲击速度影响不大。实验结果验证了喉部直径不应小于1.8 mm,否则无法形成有效的涂层。本文通过仿真和实验对低压冷喷涂喷嘴进行了几何参数优化,为进一步提高低压冷喷涂精度提供了参数设计指导。
Due to the low deposition resolution of low-pressure cold spray, it is unable to achieve fine coating. To improve its accuracy, the aim of this study is to optimize the geometrical parameters of the commonly used convergent-divergent-straight nozzle to improve the gas flow field status for higher quality deposition. The results show that the throat diameter is the key parameter affecting particle velocity, and a larger throat diameter can generate higher particle velocity. In addition, the length of the divergent section and the straight section also affect particle velocity, and need to be opti-mized. The smaller the powder injection angle, the smaller the impact velocity of particles, but the impact on particle velocity is not significant when the angle exceeds 60 degrees. Experimental re-sults verify that the throat diameter should not be less than 1.8 mm, otherwise an effective coating cannot be formed. This paper optimizes the geometrical parameters of the low-pressure cold spray nozzle through simulation and experiments, providing parameter design guidance for further im-proving the accuracy of low-pressure cold spray.

References

[1]  Alkimov, A.P., Papyrin, A.N., Kosarev, V.F., et al. (1994) Gas Dynamic Spraying Method for Applying a Coating. US Patent No. 5302414.
[2]  Papyrin, A., Kosarev, V., Klinkov, S., et al. (2006) Cold Spray Technology. Elsevier, Amsterdam.
[3]  黄春杰, 殷硕, 李文亚, 等. 冷喷涂技术及其系统的研究现状与展望[J]. 表面技术, 2021, 50(7): 1-23.
[4]  Yin, S., Cava-liere, P., Aldwell, B., et al. (2018) Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications. Additive Manufacturing, 21, 628-650.
https://doi.org/10.1016/j.addma.2018.04.017
[5]  Yadroitsau, I. (2008) Direct Manufactur-ing of 3D Objects by Selective Laser Melting of Metal Powders. Ph.D. Thesis, St-Etienne University, Saint-Etienne.
[6]  Cav-aliere, P. and Silvello, A. (2014) Processing Parameters Affecting Cold Spay Coatings Performances. The International Journal of Advanced Manufacturing Technology, 71, 263-277.
https://doi.org/10.1007/s00170-013-5465-0
[7]  Klinkov, S.V., Kosarev, V.F., Ryashin, N.S. and Shikalov, V.S. (2016) Experimental Study of Cold Gas Spraying through a Mask. Part 1. Thermophysics and Aeromechanics, 23, 735-740.
https://doi.org/10.1134/S0869864316050115
[8]  Lupoi, R. and O’neill, W. (2011) Powder Stream Characteristics in Cold Spray Nozzles. Surface and Coatings Technology, 206, 1069-1076.
https://doi.org/10.1016/j.surfcoat.2011.07.061
[9]  Suo, X.K., Liu, T.K., Li, W.Y., et al. (2013) Numerical Study on the Effect of Nozzle Dimension on Particle Distribution in Cold Spraying. Surface and Coatings Technology, 220, 107-111.
https://doi.org/10.1016/j.surfcoat.2012.09.029
[10]  Zaikovskii, V.N., Klinkov, S.V., Kosarev, V.F., Melamed, B.M. and Trubacheev, G.V. (2014) Control of Spray Spot in Cold Spray Technology. Part 1. Gas Dynamic Aspects. Thermophysics and Aeromechanics, 21, 105-112.
https://doi.org/10.1134/S0869864314010107
[11]  Sova, A., Klinkov, S., Kosarev, V., Ryashin, N. and Smurov, I. (2013) Preliminary Study on Deposition of Aluminium and Copper Powders by Cold Spray Micronozzle Using Helium. Surface and Coatings Technology, 220, 98-101.
https://doi.org/10.1016/j.surfcoat.2012.09.036
[12]  Li, W.Y., Liao, H., Wang, H.T., et al. (2006) Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method. Applied Surface Science, 253, 708-713.
https://doi.org/10.1016/j.apsusc.2005.12.157
[13]  Sakaki, K. (2007) The Influence of Nozzle Design in the Cold Spray Process. In: Champagne, V.K., Ed., The Cold Spray Materials Deposition Process, Woodhead Publishing, Cambridge, 117-126.
https://doi.org/10.1533/9781845693787.2.117
[14]  Sova, A., Smurov, I., Doubenskaia, M. and Petrovskiy, P. (2018) Deposition of Aluminum Powder by Cold Spray Micronozzle. The International Journal of Advanced Manufacturing Technol-ogy, 95, 3745-3752.
https://doi.org/10.1007/s00170-017-1443-2
[15]  Huang, G.S., Gu, D.M., Li, X.B., Xing, L.K. and Wang, H.R. (2014) Numerical Simulation on Syphonage Effect of Laval Nozzle for Low Pressure Cold Spray System. Journal of Materials Pro-cessing Technology, 214, 2497-2504.
https://doi.org/10.1016/j.jmatprotec.2014.05.014
[16]  Yakhot, V. and Orszag, S.A. (1987) Renormalization Group and Local Order in Strong Turbulence. Nuclear Physics B-Proceedings Supplements, 2, 417-440.
https://doi.org/10.1016/0920-5632(87)90031-4
[17]  Ounis, H., Ahmadi, G. and Mclaughlin, J.B. (1991) Dispersion and Deposition of Brownian Particles from Point Sources in a Simulated Turbulent Channel Flow. Journal of Colloid and Interface Science, 147, 233-250.
https://doi.org/10.1016/0021-9797(91)90151-W
[18]  Yin, S., Meyer, M., Li, W.Y., Liao, H.L. and Lupoi, R. (2016) Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review. Journal of Thermal Spray Technology, 25, 874-896.
https://doi.org/10.1007/s11666-016-0406-8
[19]  Macdonald, D., Leblanc-Robert, S., Fernández, R., Farjam, A. and Jodoin, B. (2016) Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance. Journal of Thermal Spray Technology, 25, 1149-1157.
https://doi.org/10.1007/s11666-016-0426-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133