|
铝合金颗粒低压冷喷涂喷嘴几何参数优化设计
|
Abstract:
因低压冷喷涂沉积精度较低,无法实现微细化喷涂,为提高其精度,本研究目标是优化其中常用的收缩–发散–直筒型喷嘴的几何结构参数,改善气流场状态,以获得更高质量的沉积。结果表明,喉部直径是影响颗粒速度的关键参数,较大的喉部直径可以产生更高的颗粒速度。此外,发散段长度和直筒段长度也会影响颗粒速度,需要优化选择,粉末的注入角度越小,颗粒的冲击速度越小,但角度超过60度以后,对颗粒的冲击速度影响不大。实验结果验证了喉部直径不应小于1.8 mm,否则无法形成有效的涂层。本文通过仿真和实验对低压冷喷涂喷嘴进行了几何参数优化,为进一步提高低压冷喷涂精度提供了参数设计指导。
Due to the low deposition resolution of low-pressure cold spray, it is unable to achieve fine coating. To improve its accuracy, the aim of this study is to optimize the geometrical parameters of the commonly used convergent-divergent-straight nozzle to improve the gas flow field status for higher quality deposition. The results show that the throat diameter is the key parameter affecting particle velocity, and a larger throat diameter can generate higher particle velocity. In addition, the length of the divergent section and the straight section also affect particle velocity, and need to be opti-mized. The smaller the powder injection angle, the smaller the impact velocity of particles, but the impact on particle velocity is not significant when the angle exceeds 60 degrees. Experimental re-sults verify that the throat diameter should not be less than 1.8 mm, otherwise an effective coating cannot be formed. This paper optimizes the geometrical parameters of the low-pressure cold spray nozzle through simulation and experiments, providing parameter design guidance for further im-proving the accuracy of low-pressure cold spray.
[1] | Alkimov, A.P., Papyrin, A.N., Kosarev, V.F., et al. (1994) Gas Dynamic Spraying Method for Applying a Coating. US Patent No. 5302414. |
[2] | Papyrin, A., Kosarev, V., Klinkov, S., et al. (2006) Cold Spray Technology. Elsevier, Amsterdam. |
[3] | 黄春杰, 殷硕, 李文亚, 等. 冷喷涂技术及其系统的研究现状与展望[J]. 表面技术, 2021, 50(7): 1-23. |
[4] | Yin, S., Cava-liere, P., Aldwell, B., et al. (2018) Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications. Additive Manufacturing, 21, 628-650. https://doi.org/10.1016/j.addma.2018.04.017 |
[5] | Yadroitsau, I. (2008) Direct Manufactur-ing of 3D Objects by Selective Laser Melting of Metal Powders. Ph.D. Thesis, St-Etienne University, Saint-Etienne. |
[6] | Cav-aliere, P. and Silvello, A. (2014) Processing Parameters Affecting Cold Spay Coatings Performances. The International Journal of Advanced Manufacturing Technology, 71, 263-277. https://doi.org/10.1007/s00170-013-5465-0 |
[7] | Klinkov, S.V., Kosarev, V.F., Ryashin, N.S. and Shikalov, V.S. (2016) Experimental Study of Cold Gas Spraying through a Mask. Part 1. Thermophysics and Aeromechanics, 23, 735-740. https://doi.org/10.1134/S0869864316050115 |
[8] | Lupoi, R. and O’neill, W. (2011) Powder Stream Characteristics in Cold Spray Nozzles. Surface and Coatings Technology, 206, 1069-1076. https://doi.org/10.1016/j.surfcoat.2011.07.061 |
[9] | Suo, X.K., Liu, T.K., Li, W.Y., et al. (2013) Numerical Study on the Effect of Nozzle Dimension on Particle Distribution in Cold Spraying. Surface and Coatings Technology, 220, 107-111. https://doi.org/10.1016/j.surfcoat.2012.09.029 |
[10] | Zaikovskii, V.N., Klinkov, S.V., Kosarev, V.F., Melamed, B.M. and Trubacheev, G.V. (2014) Control of Spray Spot in Cold Spray Technology. Part 1. Gas Dynamic Aspects. Thermophysics and Aeromechanics, 21, 105-112.
https://doi.org/10.1134/S0869864314010107 |
[11] | Sova, A., Klinkov, S., Kosarev, V., Ryashin, N. and Smurov, I. (2013) Preliminary Study on Deposition of Aluminium and Copper Powders by Cold Spray Micronozzle Using Helium. Surface and Coatings Technology, 220, 98-101.
https://doi.org/10.1016/j.surfcoat.2012.09.036 |
[12] | Li, W.Y., Liao, H., Wang, H.T., et al. (2006) Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method. Applied Surface Science, 253, 708-713. https://doi.org/10.1016/j.apsusc.2005.12.157 |
[13] | Sakaki, K. (2007) The Influence of Nozzle Design in the Cold Spray Process. In: Champagne, V.K., Ed., The Cold Spray Materials Deposition Process, Woodhead Publishing, Cambridge, 117-126.
https://doi.org/10.1533/9781845693787.2.117 |
[14] | Sova, A., Smurov, I., Doubenskaia, M. and Petrovskiy, P. (2018) Deposition of Aluminum Powder by Cold Spray Micronozzle. The International Journal of Advanced Manufacturing Technol-ogy, 95, 3745-3752.
https://doi.org/10.1007/s00170-017-1443-2 |
[15] | Huang, G.S., Gu, D.M., Li, X.B., Xing, L.K. and Wang, H.R. (2014) Numerical Simulation on Syphonage Effect of Laval Nozzle for Low Pressure Cold Spray System. Journal of Materials Pro-cessing Technology, 214, 2497-2504.
https://doi.org/10.1016/j.jmatprotec.2014.05.014 |
[16] | Yakhot, V. and Orszag, S.A. (1987) Renormalization Group and Local Order in Strong Turbulence. Nuclear Physics B-Proceedings Supplements, 2, 417-440. https://doi.org/10.1016/0920-5632(87)90031-4 |
[17] | Ounis, H., Ahmadi, G. and Mclaughlin, J.B. (1991) Dispersion and Deposition of Brownian Particles from Point Sources in a Simulated Turbulent Channel Flow. Journal of Colloid and Interface Science, 147, 233-250.
https://doi.org/10.1016/0021-9797(91)90151-W |
[18] | Yin, S., Meyer, M., Li, W.Y., Liao, H.L. and Lupoi, R. (2016) Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review. Journal of Thermal Spray Technology, 25, 874-896.
https://doi.org/10.1007/s11666-016-0406-8 |
[19] | Macdonald, D., Leblanc-Robert, S., Fernández, R., Farjam, A. and Jodoin, B. (2016) Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance. Journal of Thermal Spray Technology, 25, 1149-1157.
https://doi.org/10.1007/s11666-016-0426-4 |