全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Simple One-Step System Enhances the Availability of High-Quality Sperm for Assisted Reproductive Procedures

DOI: 10.4236/ojog.2023.1310141, PP. 1676-1687

Keywords: Simple, Enhanced, Sperm, Processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the last forty years, in vitro fertilization, which has expanded to assisted reproductive technologies (ART), has gone from an experimental procedure to the mainstay of infertility treatment. A technique that once made news with each birth is now responsible for 2% - 3% of the babies born in several nations of the world. This has happened due to significant advances in hormone therapies, culture techniques, and the specialization of equipment designed to support oocytes and embryos. However, for all the advances made to support female fertility, little has changed in male treatment since the advent of intracytoplasmic sperm injection in the early 1990’s. Recently, a number of authors have documented problems with sperm preparation techniques. Some report DNA damage, others membrane and organelle issues, all of which potentially hamper fertilization rates and possibly take-home baby rates. Further, as the clinical workload of ART has increased and staffing shortages have become critical, all labs are looking for simpler, more efficient ways to perform job functions. This study describes a simple, one-step method for preparing semen samples for ART. This new technique minimizes excessive manipulation of the sample compared to current standards and is less likely to cause cell damage. Preliminary results suggest a significant enhancement in recovered sample motility and an optimal sample for ART procedures with minimal sample manipulation.

References

[1]  Chronopoulou, E. and Harper, J.C. (2015) IVF Culture Media: Past, Present and Future. Human Reproduction Update, 21, 39-55.
https://doi.org/10.1093/humupd/dmu040
[2]  Sunde, A., Brison, D., Dumoulin, J., Harper, J., Lundin, K., Magli, M.C., Van den Abbeel, E. and Veiga, A. (2016) Time to Take Human Embryo Culture Seriously. Human Reproduction, 31, 2174-2182.
https://doi.org/10.1093/humrep/dew157
[3]  Kovačič, B. (2012) Culture Systems: Low-Oxygen Culture. Methods in Molecular Biology, 912, 249-272.
https://doi.org/10.1007/978-1-61779-971-6_15
[4]  Fujiwara, M., Takahashi, K., Izuno, M., Duan, Y.R., Kazono, M., Kimura, F. and Noda, Y. (2007) Effect of Micro-Environment Maintenance on Embryo Culture after In-Vitro Fertilization: Comparison of Top-Load Mini Incubator and Conventional Front-Load Incubator. Journal of Assisted Reproduction and Genetics, 24, 5-9.
https://doi.org/10.1007/s10815-006-9088-3
[5]  Swain, J.E. (2014) Decisions for the IVF Laboratory: Comparative Analysis of Embryo Culture Incubators. Reproductive BioMedicine Online, 28, 535-547.
https://doi.org/10.1016/j.rbmo.2014.01.004
[6]  Sciorio, R. and Smith, G.D. (2019) Embryo Culture at a Reduced Oxygen Concentration of 5%: A Mini Review. Zygote, 27, 355-361.
https://doi.org/10.1017/S0967199419000522
[7]  Cedillo, L., Ocampo-Bárcenas, A., Maldonado, I., Valdez-Morales, F.J., Camargo, F. and López-Bayghen, E. (2016) A Simple, Less Invasive Stripper Micropipetter-Based Technique for Day 3 Embryo Biopsy. Fertility Research and Practice, 2, Article No. 13.
https://doi.org/10.1186/s40738-016-0027-4
[8]  Moreau, J., Gatimel, N., Lippi, Y., Tavenier, G., Fauque, P., Guilleman, M., Naylies, C., et al. (2021) Impact of the Polycarbonate Strippers Used in Assisted Reproduction Techniques on Embryonic Development. Human Reproduction, 36, 331-339.
https://doi.org/10.1093/humrep/deaa290
[9]  Sermon, K. (2017) Novel Technologies Emerging for Preimplantation Genetic Diagnosis and Preimplantation Genetic Testing for Aneuploidy. Expert Review of Molecular Diagnostics, 17, 71-82.
https://doi.org/10.1080/14737159.2017.1262261
[10]  Rubio, C., Navarro-Sánchez, L., García-Pascual, C.M., Ocali, O., Cimadomo, D., Venier, W., et al. (2020) Multicenter Prospective Study of Concordance between Embryonic Cell-Free DNA and Trophectoderm Biopsies from 1301 Human Blastocysts. American Journal of Obstetrics & Gynecology, 223, 751.e1-751.e13.
https://doi.org/10.1016/j.ajog.2020.04.035
[11]  Navarro-Sánchez, L., García-Pascual, C., Rubio, C. and Simón, C. (2022) Non-Invasive Preimplantation Genetic Testing for Aneuploidies: An Update. Reproductive BioMedicine Online, 44, 817-828.
https://doi.org/10.1016/j.rbmo.2022.01.012
[12]  Chen, Z.J., Shi, Y., Sun, Y., Zhang, B., Liang, X., Cao, Y., Yang, J., et al. (2016) Fresh versus Frozen Embryos for Infertility in the Polycystic Ovary Syndrome. The New England Journal of Medicine, 375, 523-533.
https://doi.org/10.1056/NEJMoa1513873
[13]  Rienzi, L., Gracia, C., Maggiulli, R., LaBarbera, A.R., Kaser, D.J., Ubaldi, F.M., et al. (2017) Oocyte, Embryo and Blastocyst Cryopreservation in ART: Systematic Review and Meta-Analysis Comparing Slow-Freezing versus Vitrification to Produce Evidence for the Development of Global Guidance. Human Reproduction Update, 23, 139-155.
https://doi.org/10.1093/humupd/dmw038
[14]  Berntsen, S., Söderström-Anttila, V., Wennerholm, U.B., Laivuori, H., Loft, A., Oldereid, N.B., Romundstad, L.B., Bergh, C. and Pinborg, A. (2019) The Health of Children Conceived by ART: “The Chicken or the Egg?”. Human Reproduction Update, 25, 137-158.
https://doi.org/10.1093/humupd/dmz001
[15]  Yan, J., Qin, Y., Zhao, H., Sun, Y., Gong, F., Li, R., et al. (2021) Live Birth with or without Preimplantation Genetic Testing for Aneuploidy. The New England Journal of Medicine, 385, 2047-2058.
https://doi.org/10.1056/NEJMoa2103613
[16]  Kotze, D.J., Hansen, P., Keskintepe, L., Snowden, E., Sher, G. and Kruger, T. (2010) Embryo Selection Criteria Based on Morphology VERSUS the Expression of a Biochemical Marker (sHLA-G) and a Graduated Embryo Score: Prediction of Pregnancy Outcome. Journal of Assisted Reproduction and Genetics, 27, 309-316.
https://doi.org/10.1007/s10815-010-9403-x
[17]  Prien, S.D., Wessels, C.E. and Penrose, L.L. (2015) Preliminary Trials of a Specific Gravity Technique in the Determination of Early Embryo Growth Potential. Human Reproduction, 30, 2076-2083.
https://doi.org/10.1093/humrep/dev178
[18]  Wessels, C., Penrose, L., Ahmad, K. and Prien, S. (2017) Noninvasive Embryo Assessment Technique Based on Buoyancy and Its Association with Embryo Survival after Cryopreservation. Theriogenology, 103, 169-172.
https://doi.org/10.1016/j.theriogenology.2017.07.010
[19]  Gallego, R.D., Remohí, J. and Meseguer, M. (2019) Time-Lapse Imaging: The State of the Art. Biology of Reproduction, 101, 1146-1154.
https://doi.org/10.1093/biolre/ioz035
[20]  Mascarenhas, M., Fox, S.J., Thompson, K. and Balen, A.H. (2019) Cumulative Live Birth Rates and Perinatal Outcomes with the Use of Time-Lapse Imaging Incubators for Embryo Culture: A Retrospective Cohort Study of 1882 ART Cycles. BJOG, 126, 280-286.
https://doi.org/10.1111/1471-0528.15161
[21]  Lundin, K. and Park, H. (2020) Time-Lapse Technology for Embryo Culture and Selection. Upsala Journal of Medical Sciences, 125, 77-84.
https://doi.org/10.1080/03009734.2020.1728444
[22]  Dimitriadis, I., Zaninovic, N., Badiola, A.C. and Bormann, C.L. (2022) Artificial Intelligence in the Embryology Laboratory: A Review. Reproductive BioMedicine Online, 44, 435-448.
https://doi.org/10.1016/j.rbmo.2021.11.003
[23]  Rubino, P., Viganò, P., Luddi, A. and Piomboni, P. (2016) The ICSI Procedure from Past to Future: A Systematic Review of the More Controversial Aspects. Human Reproduction Update, 22, 194-227.
https://doi.org/10.1093/humupd/dmv050
[24]  O’Neill, C.L., Chow, S., Rosenwaks, Z. and Palermo, G.D. (2018) Development of ICSI. Reproduction, 156, F51-F58.
https://doi.org/10.1530/REP-18-0011
[25]  Høst, E., Ernst, E., Lindenberg, S. and Smidt-Jensen, S. (2001) Morphology of Spermatozoa Used in IVF and ICSI from Oligozoospermic Men. Reproductive BioMedicine Online, 3, 212-215.
https://doi.org/10.1016/S1472-6483(10)62038-X
[26]  Windt, M.L., Coetzee, K., Kruger, T.F., Menkveld, R. and van der Merwe, J.P. (2002) Intracytoplasmic Sperm Injection with Testicular Spermatozoa in Men with Azoospermia. Journal of Assisted Reproduction and Genetics, 19, 53-59.
https://doi.org/10.1023/A:1014487412975
[27]  Zarrabi, A.D. and Kruger, T.F. (2021) Microsurgical Testicular Sperm Extraction for Testicular Failure: The South African Experience and First Successful Pregnancy. South African Journal of Surgery, 59, 52-56.
[28]  Lundin, K., Söderlund, B. and Hamberger, L. (1997) The Relationship between Sperm Morphology and Rates of Fertilization, Pregnancy and Spontaneous Abortion in an In-Vitro Fertilization/Intracytoplasmic Sperm Injection Programme. Human Reproduction, 12, 2676-2681.
https://doi.org/10.1093/humrep/12.12.2676
[29]  Lowe, B., Hutchison, P., Heron, C., Brenner, B., Kruger, S. and Cadwallader, J. (1996) Treatment of Male Infertility: The ICSI Revolution Is Secure. New Zealand Medical Journal, 109, 303-304.
[30]  Orief, Y., Dafopoulos, K. and Al-Hassani, S. (2004) Should ICSI Be Used in Non-Male Factor Infertility? Reproductive BioMedicine Online, 9, 348-356.
https://doi.org/10.1016/S1472-6483(10)62152-9
[31]  Check, J.H., Bollendorf, A., Wilson, C., Summers-Chase, D., Horwath, D. and Yuan, W. (2007) A Retrospective Comparison of Pregnancy Outcome Following Conventional Oocyte Insemination vs Intracytoplasmic Sperm Injection for Isolated Abnormalities in Sperm Morphology Using Strict Criteria. Journal of Andrology, 28, 607-612.
https://doi.org/10.2164/jandrol.106.001941
[32]  Vaegter, K.K., Lakic, T.G., Olovsson, M., Berglund, L., Brodin, T. and Holte, J. (2017) Which Factors Are Most Predictive for Live Birth after in Vitro Fertilization and Intracytoplasmic Sperm Injection (IVF/ICSI) Treatments? Analysis of 100 Prospectively Recorded Variables in 8,400 IVF/ICSI Single-Embryo Transfers. Fertility and Sterility, 107, 641-648.e2.
https://doi.org/10.1016/j.fertnstert.2016.12.005
[33]  Ribas-Maynou, J., Barranco, I., Sorolla-Segura, M., Llavanera, M., Delgado-Bermúdez, A. and Yeste, M. (2022) Advanced Sperm Selection Strategies as a Treatment for Infertile Couples: A Systematic Review. International Journal of Molecular Sciences, 23, Article No. 13859.
https://doi.org/10.3390/ijms232213859
[34]  Teixeira, D.M., Hadyme Miyague, A., Barbosa, M.A., Navarro, P.A., Raine-Fenning, N., Nastri, C.O. and Martins, W.P. (2020) Regular (ICSI) versus Ultra-High Magnification (IMSI) Sperm Selection for Assisted Reproduction. The Cochrane Database of Systematic Reviews, 2, CD010167.
https://doi.org/10.1002/14651858.CD010167.pub3
[35]  Johnson, D.L. and Prien, S.D. (2014) A Novel Collection Technique for the Improvement of Semen Quality. Journal of Dairy, Veterinary & Animal Research, 1, 4-7.
https://doi.org/10.15406/jdvar.2014.01.00002
[36]  Prien, S., Johnson, D., Welch, L., Kauffman, R. and Penrose, L. (2023) Semen Collection in a Device Specifically Designed for Human Semen Improves Sample Physiological and Morphological Parameters. Archives of Health Sciences, 7, 1-8.
[37]  Quinn, M.M., Ribeiro, S., Juarez-Hernandez, F., Simbulan, R.K., Jalalian, L., Cedars, M.I. and Rosen, M.P. (2022) Microfluidic Preparation of Spermatozoa for ICSI Produces Similar Embryo Quality to Density-Gradient Centrifugation: A Pragmatic, Randomized Controlled Trial. Human Reproduction, 37, 1406-1413.
https://doi.org/10.1093/humrep/deac099
[38]  Aurich, C. (2023) Selection of Frozen-Thawed Stallion Semen by Microfluidic Technology. Reproduction in Domestic Animals, 58, 443-449.
https://doi.org/10.1111/rda.14305
[39]  Hsu, C.T., Lee, C.I., Lin, F.S., Wang, F.Z., Chang, H.C., Wang, T.E., Huang, C.C., et al. (2023) Live Motile Sperm Sorting Device for Enhanced Sperm-Fertilization Competency: Comparative Analysis with Density-Gradient Centrifugation and Microfluidic Sperm Sorting. Journal of Assisted Reproduction and Genetics, 40, 1855-1864.
https://doi.org/10.1007/s10815-023-02838-4
[40]  Prien, S. and Penrose, L. (2015) Method and Apparatus for Gender Selection Based on pH. U.S. Patent #9,157,063.
[41]  Practice Committee of the American Society for Reproductive Medicine (2012) Evaluation and Treatment of Recurrent Pregnancy Loss: A Committee Opinion. Fertility and Sterility, 98, 1103-1111.
https://doi.org/10.1016/j.fertnstert.2012.06.048
[42]  Bhatt, S.J., Marchetto, N.M., Roy, J., Morelli, S.S. and McGovern, P.G. (2021) Pregnancy Outcomes Following in Vitro Fertilization Frozen Embryo Transfer (IVF-FET) with or without Preimplantation Genetic Testing for Aneuploidy (PGT-A) in Women with Recurrent Pregnancy Loss (RPL): A SART-CORS Study. Human Reproduction, 36, 2339-2344.
https://doi.org/10.1093/humrep/deab117
[43]  Aitken, R.J., Jones, K.T. and Robertson, S.A. (2012) Reactive Oxygen Species and Sperm Function—In Sickness and in Health. Journal of Andrology, 33, 1096-1106.
https://doi.org/10.2164/jandrol.112.016535
[44]  Barati, E., Nikzad, H. and Karimian, M. (2020) Oxidative Stress and Male Infertility: Current Knowledge of Pathophysiology and Role of Antioxidant Therapy in Disease Management. Cellular and Molecular Life Sciences, 77, 93-113.
https://doi.org/10.1007/s00018-019-03253-8
[45]  Prien, S.D., Sillivent, M., Smith, B. and Penrose, L.L. (2021) A Cross-Species Comparison of a Specimen Collection Container Designed to Harvest Oxygen Radical Species. Fertility and Sterility, 116, e281.
https://doi.org/10.1016/j.fertnstert.2021.07.756
[46]  Prien, S.D., Williams, Z. and Forman, E. (2022) Preliminary Clinical Outcomes in an IVF Program Using the ProteX™ versus a Standard Specimen Cup for Semen Collection. AAB Conference/CRB Symposium, Austin, 9 May 2022, 2.
[47]  Brown, D.B., Cortes, J.E., Agramonte, G., Millan, N.M. and Hernandez-Rey, A.E. (2023) Expanding the Liquid Nitrogen Freezing Window of Semen Samples Collected for Use in DNA Fragmentation Index (DFI) Determinations. AAB Conference/CRB Symposium, Las Vegas, 10 May 2023, 5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133