Products of Odd Numbers or Prime Number Can Generate the Three Members’ Families of Fermat Last Theorem and the Theorem Is Valid for Summation of Squares of More Than Two Natural Numbers
Fermat’s last theorem, had the statement that there are no natural numbers A, B, and C such that An + Bn = Cn, in which n is a natural number greater than 2. We have shown that any product of two odd numbers can generate Fermat or Pythagoras triple (A, B, C) following n = 2 and also it is applicable A2 + B2 + C2 + D2 + so on =An2?where all are natural numbers.
References
[1]
Singh, S. (1997) Fermat’s Last Theorem: The Story of a Riddle that Confounded the World’s Greatest Minds for 358 Years.
[2]
Wiles, A. (1995) Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551.
[3]
Hilbert, D. (1897) Die Theorie der algebraischen ZahlkÖrper: Bericht, erstattet der Deutschen Mathematiker-Vereinigung. Georg Reimer, Berlin.
[4]
de Bessy, F. (1676) Traité des Triangles Rectangles en Nombres. Hachette Livre-BNF, Paris.
[5]
Euler, L. and Euler, L. (1917) Leonhardi Euleri Opera omnia: Series 1. Opera mathematica. Commentationes arithmeticae. Teubner, Stuttgart.
[6]
Kausler, C.F. (1802) Nova demonstratio theorematis nec summam, nec differentiam duorum cuborum cubum esse posse. Acta Academiae Scientiarum Imperialis Petropolitanae, 13, 245-253.
[7]
Barlow, P. (1811) An Elementary Investigation of the Theory of Numbers: With Its Application to the Indeterminate and Diophantine Analysis, the Analytical and Geometrical Division of the Circle, and Several Other Curious Algebraical and Arithmetical Problems. J. Johnson and Company, Hong Kong.
Betrand, J.L.F. (1851) Traité élémentaire d’algèbre. L. Hachette et cie, Paris.
[10]
Lebesgue, V.A. (1853) Resolution des équations biquadratiques z2 = x4±2my4, z2 = 2mx4y4, 2mz2 = x4±y4. Journal de Mathématiques Pures et Appliquée, 18, 73-86. https://doi.org/10.2307/2118559
[11]
Tafelmacher, A. (1893) Sobre la ecuacion x4 + y4 = z4. 307 p. https://revistapsicologia.uchile.cl/index.php/ANUC/article/view/20645
[12]
Gambioli, D. (1901) Memoria bibliografica sull’ultimo teorema di Fermat. 145-192.
[13]
Bang, A. (1905) Nyt Bevis for at Ligningen (I) x 4—Z 4 = y 4 ikke kan have rationale Løsninger. Nyt Tidsskrift for Matematik, 16, 35-36.
[14]
Sommer, J. (1907) Vorlesungen über zahlentheorie: Einfuhrung in die theorie der algebraischen zahlkorper. BG Teubner, Cambridge.
[15]
Nutzhorn, F. (1912) Den ubestemte Ligning x 4 + y 4 = z 4. Nyt Tidsskrift for Matematik, 23, 33-38.
[16]
Carmichael, R.D. (1913) On the Impossibility of Certain Diophantine Equations and Systems of Equations. The American Mathematical Monthly, 20, 213-221. https://doi.org/10.1080/00029890.1913.11997962
[17]
Hancock, H. (1925) The Foundations of the Theory of Algebraic Numbers. Science, 61, 5-10. https://doi.org/10.1126/science.61.1566.5
[18]
Grant, M. and Perella, M. (1999) 83.25 Descending to the Irrational. The Mathematical Gazette, 83, 263-267. https://doi.org/10.2307/3619054
[19]
Barbara, R. (2007) 91.33 Fermat’s Last Theorem in the Case n = 4. The Mathematical Gazette, 91, 260-262. https://doi.org/10.1017/S002555720018163X
[20]
Alexanderson, G. (2012) About the Cover: Sophie Germain and a Problem in Number Theory. Bulletin of the American Mathematical Society, 49, 327-331. https://doi.org/10.1090/S0273-0979-2012-01370-8
[21]
Mazur, B. and Weil, A. (1977) Ernst Edward Kummer, Collected Papers. Springer Verlog, Berlin, Hiedelberrg, New York.
[22]
Kummer, E.E. and Weil, A. (1975) Collected Papers II Function Theory. Geometry and Miscellaneous. Springer, Berlin, Hiedelberrg, New York.
[23]
Buhler, J., Crandall, R., Ernvall, R. and Metsänkylä, T. (1993) Irregular Primes and Cyclotomic Invariants to Four Million. Mathematics of Computation, 61, 151-153. https://doi.org/10.1090/S0025-5718-1993-1197511-5