全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

规范场论札记(II):局域电磁对偶变换理论、广义卡鲁扎–克莱因衍生杨–米尔斯规范场理论与高维引力规范场论
Notes on Gauge Field Theories (II): Local Electromagnetic Dual Transformation The-ory, Generalized Kaluza-Klein Emergent Yang-Mills Gauge Field Theory and Higher-Dimensional Gravitational Gauge Field Theory

DOI: 10.12677/MP.2023.135014, PP. 134-161

Keywords: 电磁对偶变换,衍生规范场,卡鲁扎–克莱因理论,引力规范理论
Electromagnetic Dual Transformation
, Emergent Gauge Field, Kaluza-Klein Theory, Gravitational Gauge Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文继续研究、评述与本专题上篇“规范场论札记(I)”中的“人造”(synthetic)规范场和“呈展”(emergent)规范场有关的两个主题。本文“规范场论札记(II)”主要研究三个具体问题:i) 在前人的磁荷和对偶变换理论基础之上,提出了局域电磁对偶变换对称性和对偶规范场概念,指出对于电磁波而言,对偶规范势的效果使得真空中的电磁波好似在介电系数和磁导率均为张量的各向异性介质中传播;ii) 给出了一种非阿贝尔版本或广义的卡鲁扎–克莱因理论的详细推导过程,其目的是为了具体介绍一个统一爱因斯坦广义相对论引力和杨–米尔斯规范相互作用的理论。在此模型中,杨–米尔斯规范场以高维引力度规场分量的身份在普通四维时空中呈现出来,或者说,杨–米尔斯规范场在本质上是一种非阿贝尔卡鲁扎–克莱因高维引力场;iii) 介绍了笔者提出的一种自旋联络高维引力规范理论,其引力拉格朗日量用黎曼曲率平方项构造,高维自旋仿射联络(洛伦兹联络)具有杨–米尔斯规范势的特征、矢量场和旋量物质场的高维自旋流在四维时空内表现为杨–米尔斯规范荷流,从而该高维引力规范理论可以统一引力相互作用和杨–米尔斯规范相互作用。在文献中,引力理论有很多家,虽然本文仅对非阿贝尔版本的卡鲁扎–克莱因理论和引力规范理论的长处和缺陷作了评述,但希望本文对此二者的析评有助于读者举一反三、触类旁通理解文献中各类引力理论的风格特征和优缺点。
This paper continues to explore and review the two topics of “synthetic” gauge field and “emergent” gauge field, which have already been considered in the last paper entitled “Notes on Gauge Field Theories (I)”. The present paper on “Notes on Gauge Field Theories (II)” includes three topics: i) A theory of local electromagnetic dual transformation symmetry and dual gauge field is suggested based on the previous theories of magnetic charge and dual transformation, and it is pointed out that the effect of dual gauge potential makes an electromagnetic wave in vacuum seem to propagate in an anisotropic medium whose permittivity and permeability are both tensors; ii) A non-Abelian version or generalized Kaluza-Klein theory is given in detail. The purpose is to introduce a theory of fundamental interaction that unifies Einstein’s general-relativity gravity and Yang-Mills gauge interaction. In this model, the Yang-Mills gauge potential is a higher-dimensional gravitational metricfield off-diagonal component emerging in the ordinary four-dimensional spacetime, or in other words, the Yang-Mills gauge field is essentially a non-Abelian Kaluza-Klein higher-dimensional gravitational field; iii) A theory of higher-dimensional spin-connection gravitational gauge field theory, of which the gravitational Lagrangian density is quadratic in the Riemannian curvature, is reviewed. The higher-dimensional spin-affine connection (the Lorentz connection) can serve as a Yang-Mills gauge potential and the spin currents of vectorial and spinorial matter fields play a role of Yang-Mills gauge charge currents in the four-dimensional spacetime, and so the gravitational interaction and the Yang-Mills gauge interaction can be unified into the present higher-dimensional spin-connection gravitational gauge theory, which was suggested by us. There have been many theories of gravitation in the literature. Although the merits and weaknesses of only the non-Abelian version of Kaluza-Klein theory and the

References

[1]  Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195.
https://doi.org/10.1103/PhysRev.96.191
[2]  Glashow, S.L. (1961) Partial-Symmetries of Weak Interactions. Nuclear Physics, 22, 579-588.
https://doi.org/10.1016/0029-5582(61)90469-2
[3]  Weinberg, S. (1967) A Model of Leptons. Physical Review Letters, 19, 1264-1266.
https://doi.org/10.1103/PhysRevLett.19.1264
[4]  Salam, A. (1968) Weak and Electromagnetic Interactions. In: Svar-tholm, N., Ed., Elementary Particle Physics: Relativistic Groups and Analyticity, 8th Nobel Symposium, Almquvist and Wiksell, Stockholm, 367-377.
[5]  Weinberg, S. (1995) The Quantum Theory of Fields (I). Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139644167
[6]  Weinberg, S. (1996) The Quantum Theory of Fields (II). Cambridge University Press, Cambridge.
[7]  Ryder, L.H. (1996) Quantum Field Theory. 2nd Edition, Cambridge University Press, Cambridge.
[8]  Weyl, H. (1950) Space-Time-Matter (Translated from the 4th Edition by Brose, H.L., Methuen, London, 1922). Dover, New York.
[9]  郝刘祥. 外尔的统一场论及其影响[J]. 自然科学史研究, 2004, 23(1): 50-63.
[10]  李华钟. 简单物理系统的整体性: 贝里相位及其他[M]. 上海: 上海科学技术出版社, 1998: 3, 6, 10, 12.
[11]  Gao, X.C. (2002) Geometric Phases for Photons in an Optical Fibre and Some Related Predictions. Chinese Physical Letters, 19, 613-616.
https://doi.org/10.1088/0256-307X/19/5/302
[12]  Lin, Y.J., Compton, R.L., Jiménez-García, K., Porto, J.V. and Spiel-man, I.B. (2009) Synthetic Magnetic Fields for Ultracold Neutral Atoms. Nature, 462, 628-632.
https://doi.org/10.1038/nature08609
[13]  Lin, Y.-J., Compton, R.L., Jiménez-García, K., Phillips, W.D., Porto, J.V. and Spielman, I.B. (2011) A Synthetic Electric Force Acting on Neutral Atoms. Nature Physics, 7, 531-534.
https://doi.org/10.1038/nphys1954
[14]  Zhai, H. (2012) Spin-Orbit Coupled Quantum Gases. International Journal of Modern Physics B, 26, Article ID: 1230001.
https://doi.org/10.1142/S0217979212300010
[15]  Liu, F. and Li, J. (2015) Gauge Field Optics with Anisotropic Media. Physical Review Letters, 114, Article ID: 103902.
https://doi.org/10.1103/PhysRevLett.114.103902
[16]  Kaluza, T. (1921) Zum Unit?tsproblem in der Physik. Sitzungsber Preuss Akad Wiss, Berlin, 966-972.
[17]  Klein, O. (1926) Quantentheorie und fünfdimensionale Relativit?tstheorie. Zeitschrift für Physik A, 37, 895-906.
https://doi.org/10.1007/BF01397481
[18]  Overduin, J.M. and Wesson, P.S. (1997) Kaluza-Klein Gravity. Physical Re-ports, 283, 303-378.
https://doi.org/10.1016/S0370-1573(96)00046-4
[19]  李新洲. 现代卡卢扎-克莱因理论[J]. 自然杂志, 1985, 8(11): 771-778.
[20]  Wikipedia, Kaluza-Klein Theory. https://en.wikipedia.org/wiki/Kaluza-Klein_theory
[21]  沈建其. 规范场论札记(I): 电磁学和量子光学中的人造规范势与卡鲁扎-克莱因理论中的衍生电磁规范场[J]. 现代物理, 2023, 13(4): 85-112.
[22]  Jackson, J.D. (1999) Classical Electrodynamics. John Wiley & Sons, New York, Chapter 6, 273-275.
[23]  许冰, 严亮, 刘丽华. 电磁场的复矢量表示[J]. 大学物理, 2007, 26(4): 16-23.
[24]  沈建其. 电磁场的复张量表述[J]. 大学物理, 2009, 28(5): 6-8.
[25]  Kuyrukcu, H. (2014) The Non-Abelian Weyl-Yang-Kaluza-Klein Gravity Model. General Relativity and Gravitation, 46, Article No. 1751.
https://doi.org/10.1007/s10714-014-1751-x
[26]  LIGO Scientific Collaboration and Virgo Collaboration, et al. (2017) Multi-Messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters, 848, L12.
[27]  LIGO Scientific Collaboration and Virgo Collaboration, et al. (2017) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters, 848, L13.
[28]  沈建其. 诸引力理论喧嚣尘上, 中子星合并一扫乾坤[J]. 现代物理知识, 2019, 31(1): 17-32.
[29]  沈建其. 星系暗物质之谜及其研究现状[J]. 现代物理, 2018, 8(4): 162-176.
[30]  Shen, J.Q. (2009) Gravitational Gauge Theory De-veloped Based on the Stephenson-Kilmister-Yang Equation. International Journal of Theoretical Physics, 48, 1566-1582.
https://doi.org/10.1007/s10773-009-9929-9
[31]  Shen, J.Q. (2009) A Gravitational Constant and a Cosmological Con-stant in a Spin-Connection Gravitational Gauge Field Theory. Journal of Physics A: Mathematical & Theoretical, 42, Article ID: 155401.
https://doi.org/10.1088/1751-8113/42/15/155401
[32]  Shen, J.Q. (2016) A Gravitational Gauge Field Theory Based on Stephenson-Kilmister-Yang Gravitation with Scalar and Spinor Fields as Gravitating Matter Sources. General Relativity and Gravity, 48, Article No. 62.
https://doi.org/10.1007/s10714-016-2042-5
[33]  Shen, J.Q. (2016) Gravitational Gauge Theory as a Route to Gravi-ty-Gauge Unification. In: Bailey, L., Ed., Gauge Theories and Differential Geometry, Nova Science Publishers, Inc., New York, Chapter 3, 97-178.
[34]  Cianfrani, F., Marrocco, A. and Montani, G. (2005) Gauge Theories as a Geometrical Issue of a Kaluza-Klein Framework. International Journal of Modern Physics D, 14, 1195-1231.
https://doi.org/10.1142/S0218271805006900
[35]  Barbosa, A.L., Guillen, L.C.T. and Pereira, J.G. (2002) Teleparallel Equivalent of Non-Abelian Kaluza-Klein Theory. Physical Review D, 66, Article ID: 064028.
https://doi.org/10.1103/PhysRevD.66.064028
[36]  Lu, J.-A. and Huang, C.-G. (2013) Kaluza-Klein-Type Models of de Sitter and Poincaré Gauge Theories of Gravity. Classical & Quantum Gravity, 30, Article ID: 145004.
https://doi.org/10.1088/0264-9381/30/14/145004
[37]  Jalalzadeh, S. and Sepangi, H.R. (2005) Classical and Quantum Dynamics of Confined Test Particles in Brane Gravity. Classical & Quantum Gravity, 22, 2035-2048.
https://doi.org/10.1088/0264-9381/22/11/008
[38]  侯伯元, 侯伯宇. 物理学家用微分几何[M]. 第二版. 北京: 科学出版社, 2004: 2, 4.
[39]  Ohanian, H.C. and Ruffini, R. (1994) Gravitation and Spacetime. 2nd Edition, W. W. Norton & Company, Inc., New York, Chapter 6.
[40]  瓦尼安, H.C. (Ohanian, H.C.), 鲁菲尼, R. (Ruffini, R.). 引力与时空[M]. 第2版. 向守平, 冯珑珑, 译. 北京: 科学出版社, 2006: 6.
[41]  赵峥, 刘文彪. 广义相对论基础[M]. 北京: 清华大学出版社, 2010: 2.
[42]  沈建其. 电动力学与光学相关专题研究进展[C]//全国高校第十二届《电动力学》教学暨学术研讨会报告文选. 泉州: 福建泉州师范学院, 2009: 13-26.
[43]  沈建其. 电动力学与光学相关专题研究进展[J]. 泉州师范学院学报, 2009, 27(4): 27-32.
[44]  姜志进. 韦耳与规范场理论[C]//全国高校第十二届《电动力学》教学暨学术研讨会报告文选. 泉州: 福建泉州师范学院, 2009: 29-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133