|
基于被动辐射制冷的光伏发电效率优化方案及其监测技术研究
|
Abstract:
光伏板的发电效率与运行温度密切相关。本文通过被动辐射制冷涂层改造光伏组件,降低光伏板的运行温度,提升其发电效率。经实验及预测算法验证得出,被动辐射制冷涂层对光伏组件的运行温度有较大的降低,光伏组件正面、侧面、背面及金属框架温度分别降低了约10℃、14℃、13℃及16℃。通过降低光伏组件的运行温度,光伏板发电效率得到了提升,提升幅度约为4.5%。由此可见,被动辐射制冷涂层对于提升光伏板发电效率具有一定的可行性。
The power generation efficiency of photovoltaic (PV) plates is closely related to the operating temperature. In this research, passive radiation cooling coating was used to modify PV modules, reduce the operating temperature of PV plates, and improve the power generation efficiency. After experimental method and simulation model prediction, it was found that the operating temperature of PV modules was reduced significantly by the passive radiation cooling coating. The front, side, back, and metal frame temperatures of PV modules were decreased by about 10?C, 14?C, 13?C, and 16?C, respectively. By reducing the operating temperature, the efficiency of PV plate power generation was improved by approximately 4.5%. It can be seen that the passive radiation cooling coating has certain feasibility for improving the power generation efficiency of photovoltaic plates.
[1] | Biwole, P.H., Eclache, P. and Kuznik, F. (2013) Phase-Change Materials to Improve Solar Panel’s Performance. Energy and Buildings, 62, 59-67. https://doi.org/10.1016/j.enbuild.2013.02.059 |
[2] | Norton, B., Eames, P.C., Mallick, T.K., et al. (2011) Enhancing the Performance of Building Integrated Photovoltaics. Solar Energy, 85, 1629-1664. https://doi.org/10.1016/j.solener.2009.10.004 |
[3] | Li, Z., Ma, T., Zhao, J., Song, A. and Cheng, Y. (2019) Exper-imental Study and Performance Analysis on Solar Photovoltaic Panel Integrated with Phase Change Material. Energy, 178, 471-486.
https://doi.org/10.1016/j.energy.2019.04.166 |
[4] | 董杰, 王晓霖, 李明, 董翠翠, 孙进. 层叠型光伏-热电耦合发电系统能效提升分析[J]. 当代石油石化, 2023, 31(5): 35-40. |
[5] | Rahman, M.M., Hasanuzzaman, M. and Rahim, N.A. (2015) Effects of Various Parameters on PV-Module Power and Efficiency. Energy Conversion and Management, 103, 348-358. https://doi.org/10.1016/j.enconman.2015.06.067 |
[6] | 黄珂, 张吉, 张卓奋, 凌继红, 吕石磊. 基于天空辐射冷却系统的光伏组件降温研究[J]. 太阳能学报, 2023, 44(2): 361-365. |
[7] | Tonui, J.K. and Tripanag-nostopoulos, Y. (2008) Performance Improvement of PV/T Solar Collectors with Natural Air Flow Operation. Solar Energy, 82, 1-12. https://doi.org/10.1016/j.solener.2007.06.004 |
[8] | Kazanci, O.B., Skrupskelis, M., Sevela, P., Pavlov, G.K. and Olesen, B.W. (2014) Sustainable Heating, Cooling and Ventilation of a Plus-Energy House via Photo-voltaic/Thermal Panels. Energy and Buildings, 83, 122-129.
https://doi.org/10.1016/j.enbuild.2013.12.064 |
[9] | Gholampour, M. and Ameri, M. (2016) Energy and Exergy Analyses of Photovoltaic/Thermal Flat Transpired Collectors: Experimental and Theoretical Study. Applied Energy, 164, 837-856.
https://doi.org/10.1016/j.apenergy.2015.12.042 |
[10] | Valeh-E-Sheyda, P., Rahimi, M., Parsamoghadam, A. and Masahi, M.M. (2014) Using a Wind-Driven Ventilator to Enhance a Photovoltaic Cell Power Generation. Energy and Buildings, 73, 115-119.
https://doi.org/10.1016/j.enbuild.2013.12.052 |
[11] | Bahaidarah, H., Subhan, A., Gandhidasan, P. and Rehman, S. (2013) Performance Evaluation of a PV (Photovoltaic) Module by Back Surface Water Cooling for Hot Climatic Condi-tions. Energy, 59, 445-453.
https://doi.org/10.1016/j.energy.2013.07.050 |
[12] | Hasan, A., Mccormack, S.J., Huang, M.J. and Norton, B. (2010) Evaluation of Phase Change Materials for Thermal Regulation Enhancement of Building Integrated Photovoltaics. Solar Energy, 84, 1601-1612.
https://doi.org/10.1016/j.solener.2010.06.010 |
[13] | 周林, 曾意, 郭珂, 张有玉, 李新红, 雷建. 具有电能质量调节功能的光伏并网系统研究进展[J]. 电力系统保护与控制, 2012, 40(9): 137-145. |
[14] | 姚致清, 于飞, 赵倩, 张群. 基于模块化多电平换流器的大型光伏并网系统仿真研究[J]. 中国电机工程学报, 2013, 33(36): 27-33. |
[15] | Green, M.A., Hishikawa, Y., Warta, W., et al. (2017) Solar Cell Efficiency Tables (Version 50). Progress in Photovoltaics: Re-search and Applications, 25, 668-676. https://doi.org/10.1002/pip.2909 |
[16] | Long, L.S., Yang, Y. and Wang, L.P. (2019) Simultaneously Enhanced Solar Absorption and Radiative Cooling with Thin Silica Micro-Grating Coatings for Silicon Solar Cells. Solar Energy Materials and Solar Cells, 197, 19-24.
https://doi.org/10.1016/j.solmat.2019.04.006 |
[17] | Skoplaki, E. and Palyvos, J.A. (2009) On the Temperature De-pendence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Solar Energy, 83, 614-624. https://doi.org/10.1016/j.solener.2008.10.008 |