|
多策略改进灰狼算法及其塑料激光焊接应用
|
Abstract:
针对灰狼优化算法存在的种群多样性不足、开发与探索不平衡以及过早收敛等问题,提出一种增强型改进灰狼优化算法(EIGWO)并应用于塑料激光焊接压力控制参数优化。改进主要包括三个方面:首先,提出一种基于维度学习的狩猎搜索策略(DLH),用不同方法为每只狼构建一个可以共享信息的邻居,以此增加种群的多样性;其次,提出一种非线性的收敛策略来平衡勘探和开发,并通过修正参数A和C来模拟狼群狩猎时头狼和次头狼的交替行为;最后,对动态位置更新方程进行修正,保持种群多样性同时避免过早收敛。通过基准测试函数在多个维度下通过与原始的灰狼算法和两种改进的灰狼算法(IGWO, LGWO)以及粒子群算法(PSO)进行对比实验,实验结果表明,EIGWO具有更好的寻优性能和稳定性。在PID的参数优化应用中,通过改变参数和添加扰动,证明EIGWO具有更好的优化效果,且算法的稳定性和鲁棒性也更好。,br> Aiming at the problems of insufficient population diversity, unbalanced development and exploration and premature convergence in grey wolf optimization algorithm, an enhanced improved grey wolf optimization algorithm (EIGWO) is proposed and applied to the optimization of pressure control parameters in plastic laser welding. The improvement mainly includes three aspects: firstly, a new search strategy named dimension learning-based hunting (DLH) is proposed, and a neighbor who can share information for each wolf is constructed by different methods, so as to increase the diversity of the population. Secondly, a non-linear convergence strategy is proposed to balance exploration and development, and the alternating behavior of the first wolf and the second wolf is simulated by modifying parameters A and C. Finally, the dynamic position updating equation is modified to maintain population diversity and avoid premature convergence. In this paper, the benchmark function is compared with the original grey wolf algorithm, two improved grey wolf algorithms (IGWO, LGWO) and particle swarm optimization (PSO) in multiple dimensions. The experimental results show that EIGWO has better optimization performance and stability. In the application of PID parameter optimization, by changing parameters and adding disturbance, it is proved that EIGWO has better optimization effect, and the stability and robustness of the algorithm are also better.
[1] | 黄立涛. 汽车行业内外饰中塑料材料的应用策略[J]. 时代汽车, 2019(2): 149-150. |
[2] | 孔茗, 傅戈雁. 塑料激光焊接技术在汽车制造中的应用[J]. 塑料科技, 2018, 46(12): 68-71. |
[3] | 汪宇其, 李泽源, 李向国, 等. 基于驱控一体的伺服压力机控制系统研究[J]. 机电工程, 2020, 37(4): 438-445. |
[4] | Mirjalili, S. and Mirjalili, S.M. (2014) Andrew Lewis. Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 |
[5] | 王勇亮, 王挺, 姚辰. 基于Kent映射和自适应权重的灰狼优化算法[J]. 计算机应用研究, 2020, 37(S2): 37-40. |
[6] | 龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164. |
[7] | 李阳, 李维刚, 等. 基于莱维飞行和随机游动策略的灰狼算法[J]. 计算机科学, 2020, 47(8): 291-296. |
[8] | Mittal, N., Singh, U. and Sohi, B.S. (2016) Modified Grey Wolf Optimizer for Global Engineering Optimization. Applied Computational Intelligence and Soft Computing, 2016, Article ID: 7950348.
https://doi.org/10.1155/2016/7950348 |
[9] | Long, W., Jiao, J., Liang, X., et al. (2018) Inspired Grey Wolf Opti-mizer for Solving Large-Scale Function Optimization Problems. Applied Mathematical Modelling, 60, 112-126. https://doi.org/10.1016/j.apm.2018.03.005 |
[10] | 张铸, 饶盛华, 张仕杰. 基于自适应正态云模型的灰狼优化算法[J]. 控制与决策, 2021, 36(10): 2562-2568. |
[11] | 胡学安, 朱宝华. 透明塑料激光焊接方法及其接头设计[J]. 现代塑料加工应用, 2014, 26(3): 31-33. |
[12] | 罗绪珍, 王建, 何子昂, 等. 钛合金管板电子束焊接熔深控制工艺研究[J]. 核动力工程, 2017, 38(3): 47-50. |
[13] | 李雪源, 陈明华, 祝美丽, 等. 电场提高激光-TIG复合焊熔深的机制[J]. 焊接学报, 2012, 33(9): 49-52+115. |
[14] | Angelo, G. and Pasquettaz, G. (2012) Method for Controlling the Quality of Laser-Welding Processes, Control System: An Program Product Therefor.
https://patentimages.storage.googleapis.com/b1/f8/e8/2dcaeb460cd749/WO2007039449A1.pdf |
[15] | 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38. |