全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomass Estimation Models for Cocoa (Theobroma cacao) Plantations in Ghana, West Africa

DOI: 10.4236/ojapps.2023.139126, PP. 1588-1618

Keywords: Carbon Stocks, Diameter at Breast Height, Wood Density, Tree Height, Cocoa Landscape

Full-Text   Cite this paper   Add to My Lib

Abstract:

The role of cocoa systems for climate change mitigation and adaptation has increased substantially because of their capability to trap carbon dioxide from the atmosphere and deposited in the cocoa trees as carbon. Development of aboveground biomass (AGB) models for cocoa plantations is crucial for accurate estimation of carbon stocks in the cocoa systems, however, allometric models for estimating AGB for cocoa plantations remain a challenge for cocoa producing countries in Sub-Saharan Africa especially Ghana. The aim of this study is to develop allometric model that can be used for the estimation of AGB for cocoa plantations in Ghana, as well as West Africa. Destructive sampling was carried out on 110 cocoa trees obtained from the cocoa rehabilitation exercise for the development of the allometric models. Diameter at breast height (D), total tree height (H) and wood density (ρ) were used as predictors to develop seven models. The best model was selected based on coefficient of determination (R2), index of agreement (IA), root mean squared error (RMSE), bias (E%), mean absolute error (MAE) and corrected akaike information criterion (AICC) and percentage relative standard error (PRSE) of the estimated parameters. The selected model, which was the one with the predictors D and ρ, was given as; AGB = 0.7217ρ(D2)0.921. It was compared with the Yuliasmara

References

[1]  Watson, R.T., Gitay, H., Suarez, A. and Dokken D.J. (2002) Climate Change and Biodiversity. The Intergovernmental Panel on Climate Change, Technical Paper V, 86.
http://www.ipcc.ch
[2]  Mohanty, S. and Mohanty, B.P. (2009) Global Climate Change: A Cause of Concern. National Academy Science Letters, 32, 149-156.
https://www.researchgate.net/profile/Bimal-Mohanty/publication/215652750_Global_Climate_Change_A_cause_of_concern/links/0922b4f81876360137000000/Global-Climate-Change-A-cause-of-concern.pdf
[3]  Lu, D. (2006) The Potential and Challenge of Remote Sensing-Based Biomass Estimation. International Journal of Remote Sensing, 27, 1297-1328.
https://doi.org/10.1080/01431160500486732
[4]  Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H., Yamakura, T. and Riera, B. (2005) Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests. Ecosystem Ecology Oecologia, 145, 87-99.
https://doi.org/10.1007/s00442-005-0100-x
[5]  Peprah, K. (2015) Sustainability of Cocoa Farmers’ Livelihoods: A Case Study of Asunafo District, Ghana. Sustainable Production and Consumption, 4, 2-15.
https://doi.org/10.1016/j.spc.2015.09.001
[6]  Kolavalli, S. and Vigneri, M. (2003) Cocoa in Ghana: Shaping the Success of an Economy. In: Chuhan-Pole, P. and Manka, A., Eds., Yes, Africa Can: Success Stories from a Dynamic Continent, World Bank, Washington DC, 201-217.
[7]  Supriadi, H., Astutik, D. and Sobari, I. (2022) The Role of Agroforestry Based Cocoa on Climate Change Mitigation: A Review. IOP Conference Series: Earth and Environmental Science, 974, Article ID: 012135.
https://doi.org/10.1088/1755-1315/974/1/012135
[8]  Acheampong, E., Dawoe, E., Bosu, P. and Asante, W. (2014) Moving forward with REDD+ in Ghana: Shade Systems, Crown Cover, Carbon Stocks and Socio-Economic Dynamics of Smallholder Cocoa Agroforestry Systems. REDD+ Energy and Agriculture Programme, Accra.
https://a.storyblok.com/f/191310/1c42f6b817/snv_reap_ghana_lr_singlepages_1.pdf
[9]  (2012) Ghana Investment Plan for FIP.
https://www.cif.org/sites/cif_enc/files/FIP_presentation_2_Ghana.pdf
[10]  Askia, M.M., Robinson, J.S., Midmore, D. and Anne, V. (2016) Carbon Storage in Ghanaian Cocoa Ecosystems. Carbon Balance and Management, 11, Article No. 6.
https://doi.org/10.1186/s13021-016-0045-x
[11]  Ashiagbor, G., Forkuo, E.K., Asante, W.A., Acheampong, E., Quaye-Ballard, J.A., Boamah, P., Yakubu, M. and Foli, E. (2020) Pixel-Based and Object-Oriented Approaches in Segregating Cocoa from Forest in the Juabeso-Bia landscape of Ghana. Remote Sensing Applications: Society and Environment, 19, Article ID: 100349.
https://doi.org/10.1016/j.rsase.2020.100349
[12]  Ghana Cocoa Forest REDD+ Programme (GCFRP) (2012) The Development of Ghana’s Emission Reductions Programme Implementation Plan.
https://redd.unfccc.int/files/gcfrp_final_implementation_plan.pdf
[13]  Basuki, T.M., Skidmore, A.K., Hussin, Y.A. and Van Duren, I. (2013) Forest Biomass More Accurately by Integrating ALOS PALSAR and Landsat-7 ETM+ Data. International Journal of Remote Sensing, 34, 4871-4888.
https://doi.org/10.1080/01431161.2013.777486
[14]  Henry, M., Picard, N., Trotta, C., Manlay, R., Valentini, R., Bernoux, M. and Saint-André, L. (2011) Estimating Tree Biomass of Sub-Saharan African Forests: A Review of GlS Multiresource Forest Inventory. Springer, Berlin.
https://doi.org/10.14214/sf.38
[15]  Adu-Bredu, S. and Birigazzi, L. (2014) Proceedings of the Regional Technical Workshop on Tree Volume and Biomass Allometric Equations in West Africa. UN-REDD Programme MRV Report 21, Kumasi, Ghana. Forestry Research Institute of Ghana, Food & Agriculture the United Nations, Rome.
https://docplayer.net/61765414-Proceedings-of-the-regional-technical-workshop-on-tree-volume-and-biomass-allometric-equations-in-west-africa.html
[16]  Roxburgh, S.H., Paul, K.I., Clifford, D. and England Jr, R.R. (2015) Guidelines for Constructing Allometric Models for the Prediction of Woody Biomass: How Many Individuals to Harvest? Ecosphere, 6, 1-27.
https://doi.org/10.1890/ES14-00251.1
[17]  Temesgen, H., Affleck, D., Poudel, K., Gray, A. and Sessions, J. (2015) A Review of the Challenges and Opportunities in Estimating above Ground Forest Biomass Using Tree-Level Models. Scandinavian Journal of Forest Research, 30, 326-335.
https://doi.org/10.1080/02827581.2015.1012114
[18]  IPCC: Intergovernmental Panel on Climate Change (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES).
https://www.ipcc.ch/publication/good-practice-guidance-for-land-use-land-use-change-and-forestry/
[19]  Smiley, G.L. and Kroschel, J. (2008) Temporal Change in Carbon Stocks of Cocoa-Gliricidia Agroforests in Central Sulawesi, Indonesia. Agroforestry Systems, 73, 219-231.
https://doi.org/10.1007/s10457-008-9144-3
[20]  Santhyami, S., Basukriadi, A., Petala Patria, M. and Abdulhadi, R. (2018) The Comparison of Aboveground C-Stock between Cacao-Based Agroforestry System and Cacao Monoculture Practice in West Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 19, 472-479.
https://doi.org/10.13057/biodiv/d190214
[21]  Yuliasmara, F., Wibawa, A. and Prawoto, A.A. (2009) Carbon Stock in Different Ages and Plantation System of Cocoa: Allometric Approach. Pelita Perkebunan, 25, 86-100.
https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v26i3.137
[22]  Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., ávila, G., Alvarado, E., Poveda, V., Astorga, C., Say, E. and Deheuvels, O. (2013) Carbon Stocks and Cocoa Yields in Agroforestry Systems of Central America. Agriculture, Ecosystems & Environment, 173, 46-57.
https://doi.org/10.1016/j.agee.2013.04.013
[23]  Saj, S., Jagoret, P. and Todem Ngogue, H. (2013) Carbon Storage and Density Dynamics of Associated Trees in Three Contrasting Theobroma cacao Agroforests of Central Cameroon. Agroforestry Systems, 87, 1309-1320.
https://doi.org/10.1007/s10457-013-9639-4
[24]  Aabeyir, R., Adu-Bredu, S. and Agyare, W.A. (2020) Allometric Models for Estimating Aboveground Biomass in the Tropical Woodlands of Ghana, West Africa. Forest Ecosystems, 7, Article No. 41.
https://doi.org/10.1186/s40663-020-00250-3
[25]  Kanmegne Tamga, D., Latifi, H., Ullmann, T., Baumhauer, R., Bayala, J. and Thiel, M. (2022) Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Sensors, 23, Article 349.
https://doi.org/10.3390/s23010349
[26]  Torres, B., Jadán Maza, O., Aguirre, P., Hinojosa, L. and Günter, S. (2014) Contribution of Traditional Agroforestry to Climate Change Adaptation in the Ecuadorian Amazon: The Chakra System. In: Leal Filho, W., Ed., Handbook of Climate Change Adaptation, Springer, Berlin, 1-19.
https://doi.org/10.1007/978-3-642-40455-9_102-1
[27]  Afele, J.T., Dawoe, E., Abunyewa, A.A., Victor Afari-Sefa, V.A. and Asare, R. (2020) Carbon Storage in Cocoa Growing Systems across Different Agroecological Zones in Ghana. Pelita Perkebunan, 37, 32-49.
https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v37i1.395
[28]  Ayub, S. (2020) List of Cocoa Growing Districts in Ghana.
https://yen.com.gh/178275-list-cocoa-growing-districts-ghana.html
[29]  Chambers, J.Q., Santos, J.D., Ribeiro, R.J. and Higuchi, N. (2001) Tree Damage, Allometric Relationships, and above-Ground Net Primary Production in Central Amazon Forest. Forest Ecology and Management, 152, 73-84.
https://doi.org/10.1016/S0378-1127(00)00591-0
[30]  Zianis, D., Muukkonen, P., Makipaa, R. and Mencuccini, M. (2005) Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica Monographs, 4, 1-63.
https://doi.org/10.14214/sf.sfm4
[31]  Qualitygurus (2023) Common Types of Hypothesis Tests.
https://www.qualitygurus.com/common-types-of-hypothesis-tests
[32]  Pereira, S.M. and Leslie, G. (2009) Hypothesis Testing. Australian Critical Care, 22, 187-191.
https://doi.org/10.1016/j.aucc.2009.08.003
[33]  Noonan, M. (2022) Hypothesis Testing Steps and Overview.
https://study.com/academy/lesson/what-is-hypothesis-testing-definition-steps-examples.html
[34]  Jim, F. (2022) Paired T Test: Definition & When to Use It.
https://statisticsbyjim.com/hypothesis-testing/paired-t-test
[35]  Pardo, S. (2014) Equivalence and Noninferiority Tests for Quality, Manufacturing and Test Engineers. Chapman and Hall/CRC, New York.
https://doi.org/10.1201/b15720
[36]  Dixon, P.M., Saint-Maurice, P.F., Kim, Y., Hibbing, P., Bai, Y. and Welk, G.J. (2018) A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Medicine and Science in Sports and Exercise, 50, 837-845.
https://doi.org/10.1249/MSS.0000000000001481
[37]  Schuirmann, D.J. (1987) A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15, 657-680.
https://doi.org/10.1007/BF01068419
[38]  Ghana Statistical Service (2014) District Analytical Report. Juaboso and Bia West Districts.
https://www2.statsghana.gov.gh/docfiles/2010_District_Report/Western/Bia%20West.pdf
[39]  Hall, J.B. and Swaine, M.D. (1981) Distribution and Ecology of Vascular Plants in a Tropical Rain Forest. Forest Vegetation in Ghana. Springer, Dordrecht.
https://doi.org/10.1007/978-94-009-8650-3
[40]  Anim-Kwapong, G.J. and Frimpong, E.B. (2004) Vulnerability and Adaptation Assessment under the Netherlands Climate Change Studies Assistance Programme Phase 2 (NCCSAP2). Cocoa Research Institute of Ghana.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0cf36c072f9afe95aa9cecb927d3e8cd78e8a89b
[41]  Weber, J.C., Sotelo Montes, C., Abasse, T., Sanquetta, C.R., Silva, D.A., Mayer, S., Garcia, R.A., et al. (2018) Variation in Growth, Wood Density and Carbon Concentration in Five Tree and Shrub Species in Niger. New Forests, 49, 35-51.
https://doi.org/10.1007/s11056-017-9603-7
[42]  Williamson, G.B. and Wiemann, M.C. (2010) Measuring Wood Specific Gravity…Correctly†. American Journal of Botany, 97, 519-524.
https://doi.org/10.3732/ajb.0900243
[43]  Basuki, T.M., Leksono, B., Baral, H., Andini, S., Wahyuni, N.S., Artati, Y. and Windyarini, E. (2022) Allometric Equations for the Biomass Estimation of Calophyllum inophyllum L. in Java, Indonesia. Forests, 13, Article 1057.
https://doi.org/10.3390/f13071057
[44]  Kebede, B. and Soromessa, T. (2018) Allometric Equations for Aboveground Biomass Estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4, Article ID: 1433951.
https://doi.org/10.1080/20964129.2018.1433951
[45]  Adu-Bredu, S., Bi, A.F.T., Bouillet, J.P., Me, M.K., Kyei, S.Y. and Saint-Andre, L. (2008) An Explicit Stem Profile Model for Forked and Un-Forked Teak (Tectona grandis) Trees in West Africa. Forest Ecology and Management, 255, 2189-2203.
https://doi.org/10.1016/j.foreco.2007.12.052
[46]  Islam, M.R., Azad, M.S., Mollick, A.S., Kamruzzaman, M. and Khan, M.N.I. (2021) Allometric Equations for Estimating Stem Biomass of Artocarpus chaplasha Roxb. in Sylhet Hill Forest of Bangladesh. Trees, Forests and People, 4, Article ID: 100084.
https://doi.org/10.1016/j.tfp.2021.100084
[47]  Beck, K. (2018) How to Calculate Mass Ratio.
https://sciencing.com/calculate-mass-ratio-8326233.html
[48]  Ganti, A. (2023) Weighted Average: What Is It, How Is It Calculated and Used?
https://www.investopedia.com/terms/w/weightedaverage.asp
[49]  Packard, G. (2013) Is Logarithmic Transformation Necessary in Allometry? Biological Journal of the Linnean Society, 109, 476-486.
https://doi.org/10.1111/bij.12038
[50]  Mascaro, J., Litteon, C.M., Hughes, R.F., Uowolo, A. and Schnitzer, S. (2011) Minimizing Bias in Biomass Allometry: Model Selection and Log-Transformation of Data. Biotropica, 43, 649-653.
https://doi.org/10.1111/j.1744-7429.2011.00798.x
[51]  Hui, D. and Jackson, R. (2007) Uncertanity in Allometric Exponent Estimation. A Case Study in Scaling Metabolic Rate with Body Mass. Journal of Theoretical Biology, 249, 168-177.
https://doi.org/10.1016/j.jtbi.2007.07.003
[52]  Djomo, A.N., Ibrahima, A., Saborowski, J. and Gravenhorst, G. (2010) Allometric Equations for Biomass Estimations in Cameroon and Pan Moist Tropical Equations Including Biomass Data from Africa. Forest Ecology and Management, 260, 1873-1885.
https://doi.org/10.1016/j.foreco.2010.08.034
[53]  Sileshi, G. (2014) A Critical Review of Forest Biomass Estimation Models, Common Mistakes and Correction Measures. Forest Ecology and Management, 329, 237-254.
https://doi.org/10.1016/j.foreco.2014.06.026
[54]  Hevia, A., Vilcko, F. and Alvarez-Gonzalez, J. (2013) Dynamic Stand Growth for Norway Spruce Forests Based on Long Term Experiments in Germany. Recursos Rurais, 9, 45-54.
[55]  Tewari, V.P., Alvarez-Gonzalez, J.G. and Garcia, O. (2014) Developing a Dynamic Growth Model for Teak Plantations in India. Forest Ecosystems, 1, Article No. 9.
https://doi.org/10.1186/2197-5620-1-9
[56]  Soares, P. and Tome, M. (2007) Model Evaluation: From Model Components to Sustainable Forest Management Indicators. Cuadernos de la Sociedad Española de Ciencias Forestales, 23, 27-34.
[57]  Mukuralinda, A., Kuyah, S., Ruzibiza, M., Ndoli, A., Nabahungu, N.L. and Muthuri, C. (2021) Allometric Equations, Wood Density and Partitioning of Aboveground Biomass in the Arboretum of Ruhande, Rwanda. Trees, Forests and People, 3, Article ID: 100050.
https://doi.org/10.1016/j.tfp.2020.100050
[58]  Krause, P., Boyle, D.P. and Bäse, F. (2005) Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences, 5, 89-97.
https://doi.org/10.5194/adgeo-5-89-2005
[59]  Adhikary, P.P. and Dash, C. (2017) Comparison of Deterministic and Stochastic Methods to Predict Spatial Variation of Groundwater Depth. Applied Water Science, 7, 339-348.
https://doi.org/10.1007/s13201-014-0249-8
[60]  Stovall, A.E., Anderson-Teixeira, K.J. and Shugart, H.H. (2018) Assessing Terrestrial Laser Scanning for Developing Non-Destructive Biomass Allometry. Forest Ecology and Management, 427, 217-229.
https://doi.org/10.1016/j.foreco.2018.06.004
[61]  Huang, S., Yang, Y. and Wang, Y. (2003) A Critical Look at the Procedures for Validating Growth and Yield Models. Modelling Forest Systems Workshop on the Interface between Reality, Modelling and Parameter Estimation Processes, Sesimbra, 2-5 June 2002, 271-292.
https://www.semanticscholar.org/paper/A-critical-look-at-procedures-for-validating-growth-Huang-Yang/c1fbd0f4488c1ba812b13d732ec3f9444bc926c2
https://doi.org/10.1079/9780851996936.0271
[62]  Schneider, P. and Xhafa, F. (2022) Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring. Academic Press, Cambridge.
https://shop.elsevier.com/books/anomaly-detection-and-complex-event-processing-over-iot-data-streams/schneider/978-0-12-823818-9
https://doi.org/10.1016/B978-0-12-823818-9.00014-6
[63]  De Cáceres, M., Casals, P., Gabriel, E. and Castro, X. (2019) Scaling-up Individual-Level Allometric Equations to Predict Stand-Level Fuel Loading in Mediterranean Shrublands. Annals of Forest Science, 76, Article No. 87.
https://doi.org/10.1007/s13595-019-0873-4
[64]  Cai, S., Kang, X. and Zhang, L. (2013) Allometric Models for Aboveground Biomass of Ten Tree Species in Northeast China. Annals of Forest Science, 56, 105-122.
[65]  Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, A., O’Keefe, J. and Richardson, A.D. (2012) On the Uncertainty of Phonological Response to Climate Change and Implications for Terrestrial Biosphere Model. Biogeosciences, 9, 2063-2083.
https://doi.org/10.5194/bg-9-2063-2012
[66]  Pineiro, G., Perelman, S., Guerschman, J.P. and Paruelo, J.M. (2008). How to Evaluate Models: Observed vs. Predicted or Predicted vs. Observed? Ecological Modelling, 216, 316-322.
https://doi.org/10.1016/j.ecolmodel.2008.05.006
[67]  Cabrera, M., Samboni-Guerrero, V. and Duivenvoorden, J.F. (2018) Non-Destructive Allometric Estimates of Above-Ground and Below-Ground Biomass of High Mountain Vegetation in the Andes. Applied Vegetation Science, 21, 477-487.
https://doi.org/10.1111/avsc.12381
[68]  Majaski, C. (2023) Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example.
https://www.investopedia.com/terms/h/hypothesistesting.asp
[69]  Romero, C.F. (2018) Biomass and Nutrient Distribution in Cacao Trees (Theobroma cacao): A Case Study in Ivory Coast. Master’s Thesis, Wageningen University & Research, Wageningen.
[70]  Woodcock, D.W. (2000) Wood Specific Gravity of Trees and Forest Types in the Southern Peruvian Amazon. Acta Amazonica, 30, 589-599.
https://doi.org/10.1590/1809-43922000304599
[71]  Chave, J., Réjou-Méchain, M., Búrques, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., et al. (2014) Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Global Change Biology, 20, 3177-3190.
https://doi.org/10.1111/gcb.12629
[72]  Dutcă, I. (2019) The Variation Driven by Differences between Species and between Sites in Allometric Biomass Models. Forests, 10, Article 976.
https://doi.org/10.3390/f10110976
[73]  Chenge, I.B. (2021) Height-Diameter Relationship of Trees in Omo Strict Nature Forest Reserve, Nigeria. Trees, Forests and People, 3, Article ID: 100051.
https://doi.org/10.1016/j.tfp.2020.100051
[74]  Mcleod, S. (2019) Introduction to the Normal Distribution (Bell Curve).
https://www.simplypsychology.org/normal-distribution.html
[75]  Dutcă, I., McRoberts, R.E., Næsset, E. and Blujdea, V.N.B. (2022) Accommodating Heteroscedasticity in Allometric Biomass Models. Forest Ecology and Management, 505, Article ID: 119865.
https://doi.org/10.1016/j.foreco.2021.119865
[76]  Yoo, Y. (2019) Why Sample Size and Effect Size Increase the Power of a Statistical Test.
https://medium.com/swlh/why-sample-size-and-effect-size-increase-the-power-of-a-statistical-test-1fc12754c322#:~:text

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133