Optimization of Technical Parameters for Detecting Mycobacteria in Hospital Wastewater in Tropical Urban Areas: The Case of the City of Abidjan (C?te d’Ivoire)
The loads of organic matter, microorganisms,
detergents and antibiotics in liquid hospital effluents make them complex
environments, raising numerous health and ecological questions. Investigations
of mycobacteria in water lack adequate techniques. This study is the first part
of a pilot project aimed at developing an optimized protocol for the isolation
of mycobacteria from hospital effluents, as a prelude to more in-depth
investigation in this matrix. The aim was to compare the performance of two
decontamination methods, three culture media and two incubation temperatures
generally proposed in the literature, in order to identify the most effective
methods in each case, as well as possible areas for improvement in the
isolation of these germs from this environmental matrix. The results show that
liquid hospital effluent can be decontaminated using both the NaOH method (4%;
for 30 min.) and the CPC method (0.05%; for 30 min.), with the same
mycobacteria recovery efficiency. Despite the low concentration, decontamination
with CPC killed more mycobacteria and sufficiently eliminated contaminating
germs. In contrast, decontamination with NaOH was less harmful to mycobacteria,
but did not remove many contaminating germs. On the other hand, LJG medium
performed better than LJGF medium and LJGP medium for the growth of
mycobacteria in hospital waters. Finally, there was no difference in
performance between the two incubation temperatures of 30℃ and 37℃. The results of this study show that further evaluation of existing
protocols is required in order to optimize methods for the pre-treatment of
hospital effluent for the isolation of mycobacteria.
References
[1]
Brode, S.K., Daley, C.L. and Marras, T.K. (2014) The Epidemiologic Relationship between Tuberculosis and Non-Tuberculous Mycobacterial Disease: A Systematic Review. The International Journal of Tuberculosis and Lung Disease, 18, 1370-1377. https://pubmed.ncbi.nlm.nih.gov/25299873/
[2]
Lowry, P.W., Beck-Sague, C.M., et al. (1990) Mycobacterium Chelonae Infection among Patients Receiving High-Flux Dialysis in a Hemodialysis Clinic in California. The Journal of Infectious Diseases, 161, 85-90. https://www.jstor.org/stable/30119628
[3]
Carson, L.A., Cusick, L.B., Bland, L.A. and Favero, M.S. (1988) Efficacy of Chemical Dosing Methods for Isolating Nontuberculous Mycobacteria from Water Supplies of Dialysis Centers. Applied and Environmental Microbiology, 54, 1756-1760. https://doi.org/10.1128/aem.54.7.1756-1760.1988
[4]
Falkinham, J.O. (2015) Environmental Sources of Nontuberculous Mycobacteria. Clinics in Chest Medicine, 36, 35-41. https://doi.org/10.1016/j.ccm.2014.10.003
[5]
Phillips, M.S. and von Reyn, C.F. (2001) Nosocomial Infections Due to Nontuberculous Mycobacteria. Clinical Infectious Diseases, 33, 1363-1374. https://doi.org/10.1086/323126
[6]
Rahav, G., Pitlik, S., Amitai, Z., Lavy, A., Blech, M., Keller, N., Smollan, G., Lewis, M. and Zlot-Kin, A. (2006) An Outbreak of Mycobacterium jacuzzii Infection Following Insertion of Breast Implants. Clinical Infectious Diseases, 43, 823-830. https://doi.org/10.1086/507535
[7]
Insight-en-Pneumologie (2017) Mycobactéries Non Tuberculeuses. https://splf.fr/wp-content/uploads/2017/03/Insight-en-pneumologie.pdf
[8]
Ovrutsky, A.R., Chan, E.D., Kartalija, M., Bai, X., Jackson, M., Gibbs, S., Falkinham, J.O., Iseman, M.D., Reynolds, P.R., McDonnell, G. and Thomas, V. (2013) Co- occurrence of Free-Living Amoebae and Nontuberculous Mycobacteria in Hospital Water Networks, and Preferential Growth of Mycobacterium avium in Acanthamoeba lenticulata. Applied and Environmental Microbiology, 79, 3185-3192. https://doi.org/10.1128/AEM.03823-12
[9]
Delafont, V., Mougari, F., Cambau, E., Joyeux, M., Bouchon, D., Héchard, Y. and Moulin, L. (2014) First Evidence of Amoebae-Mycobacteria Association in Drinking Water Network. Environmental Science & Technology, 48, 11872-11882. https://doi.org/10.1021/es5036255
[10]
Parashar, D., Chauhan, D.S., Sharma, V.D., Chauhan, A., Chauhan, S.V.S. and Katoch, V.M. (2004) Optimization of Procedures for Isolation of Mycobacteria from Soil and Water Samples Obtained in Northern India. Applied and Environmental Microbiology, 70, 3751-3753. https://doi.org/10.1128/AEM.70.6.3751-3753.2004
[11]
Hammer-Dedet, F., Dupont, C., Evrevin, M., Jumas-Bilak, E. and Romano-Bertrand, S. (2021) Improved Detection of Non-Tuberculous Mycobacteria in Hospital Water Samples. Infectious Diseases Now, 51, 488-491. https://doi.org/10.1016/j.idnow.2021.04.003
[12]
Bartram, J., Cotruvo, J.A., Dufour, A., Rees, G., Pedley, S., et al. (2004) Pathogenic Mycobacteria in Water: A Guide to Public Health Consequences, Monitoring and Management. https://apps.who.int/iris/handle/10665/42854
[13]
(2015) Effets “Cocktail”: Le défi scientifique des interactions chimiques inattendues. https://www.francetvinfo.fr/sante/environnement-et-sante/effets-cocktail-le-defi-scientifique-des-interactions-chimiques-inattendues_1068113.html
[14]
Doannio, J.M.C., Konan, K.L., Dosso, F.N., Koné, A.B., Konan, Y.L., Sankaré, Y., Ekaza, E., Coulibaly, N.D., Odéhouri, K.P., Dosso, M., Sess, E.D., Marsollier, L. and Aubry, J. (2011) [Micronecta sp (Corixidae) and Diplonychus sp (Belostomatidae), Two Aquatic Hemiptera Hosts and/or Potential Vectors of Mycobacterium Ulcerans (Pathogenic Agent of Buruli Ulcer) in Cote d’Ivoire]. Medecine Tropicale, 71, 53-57.
[15]
World Health Organization (2021) Towards Zero Leprosy: Global Strategy for the Fight against Leprosy (Hansen’s Disease) 2021-2030. https://www.jstor.org/stable/resrep38994
[16]
Zeba/Lompo, S.B., Barogui, Y.T., Compaoré, J., Ouedraogo, Y., Christophe, K., Drabo, F., Kambire-Diarra, M.C.H., Tiendrébéogo, A. and Korsaga/Somé, N.N. (2018) Results of the Integrated Assessment of the Situation of Leprosy, Buruli Ulcer and Yaws around the Irrigated Areas of Bagré and Kompienga in Burkina Faso. Annals of Dermatology and Venereology, 145, S246. https://doi.org/10.1016/j.annder.2018.09.378
[17]
Vakou, S. (2023) Etude environnementale et moleculaire des mycobacteries isolees au centre et au sud de la cote D’ivoire. https://theses.hal.science/tel-02417048/document
[18]
Ahombo, G., Willison, J.C., Nguimbi, E., Moyen, R., Ampa, R. and Satre, M. (2014) Identification moléculaire des souches de mycobactéries. Scientific African, 102, 318-327.
[19]
Williams, M.D. and Falkinham, J.O. (2018) Effect of Cetylpyridinium Chloride (CPC) on Colony Formation of Common Nontuberculous Mycobacteria. Pathogens, 7, Article 79. https://doi.org/10.3390/pathogens7040079
[20]
Chatterjee, M., Bhattacharya, S., Karak, K. and Dastidar, S.G. (2013) Effects of Different Methods of Decon-Tamination for Successful Cultivation of Mycobacterium Tuberculosis. Indian Journal of Medical Research, 138, 541-548.
[21]
Li, T., Abebe, L.S., Cronk, R. and Bartram, J. (2017) A Systematic Review of Waterborne Infections from Nontuberculous Mycobacteria in Health Care Facility Water Systems. International Journal of Hygiene and Environmental Health, 220, 611-620. https://doi.org/10.1016/j.ijheh.2016.12.002
[22]
Zingué, D., Hien, H., Kaboré, A., Kanyala, E., Sanou, A. and Méda, N. (2012) Advantages and Limitations of Sputum Decontamination. Journal of Epidemiology and Public Health, 60, S126. https://doi.org/10.1016/j.respe.2012.06.309
[23]
Lucas, F., Moulin, L., Haenn, S., Desforges, L. and Cambau, E. (2023) Mycobactéries non tuberculeuses. https://piren-seine.fr/sites/default/files/piren_documents/les_archives/27_mycobacteries_non_tuberculeuses.pdf
[24]
Thomson, R., Carter, R., Gilpin, C., Coulter, C. and Hargreaves, M. (2008) Comparison of Methods for Processing Drinking Water Samples for the Isolation of Mycobacterium avium and Mycobacterium intracellulare. Applied and Environmental Microbiology, 74, 3094-3098. https://doi.org/10.1128/AEM.02009-07
[25]
Gomgnimbou, M.K., Faye, B., Tranchot-Diallo, J., Kaboré, A., Belem, L.R., Zingué, D., Sanou, A., Hien, H. and Sangaré, L. (2020) Milieu sélectif de Lowenstein-Jensen à base de vancomycine pour la ré-duction des contaminations de cultures de mycobactéries par les bactéries sporulantes. The Pan African Medical Journal, 37, Article 345. https://doi.org/10.11604/pamj.2020.37.345.23016
[26]
Guillet-Caruba, C., Martinez, V. And Doucet-Populaire, F. (2014) Les nouveaux outils de diagnostic micro-biologique de la tuberculose maladie. La Revue de Médecine Interne, 35, 794-800. https://doi.org/10.1016/j.revmed.2014.05.001
[27]
Kassaza, K., Orikiriza, P., Llosa, A., Bazira, J., Nyehangane, D., Page, A.L. and Boum, Y. (2014) Lowenstein-Jensen Selective Medium for Reducing Contamination in Mycobacterium tuberculosis Culture. Journal of Clinical Microbiology, 52, 2671- 2673. https://doi.org/10.1128/JCM.00749-14
[28]
Tell, L.A., Foley, J., Needham, M.L. and Walker, R.L. (2003) Diagnosis of Avian Mycobacteriosis: Comparison of Culture, Acid-Fast Stains, and Polymerase Chain Reaction for the Identification of Mycobacterium Avium in Experimentally Inoculated Japanese Quail (Coturnix Coturnix Japonica). Avian Diseases, 47, 444-452. https://doi.org/10.1637/0005-2086(2003)047[0444:DOAMCO]2.0.CO;2
[29]
Faburay, A.K., Mendy, F.S., Otu, J.K., Faal-Jawara, T.I., Gehre, F. and Secka, O. (2016) Performance Comparison of a Pair of Lowenstein-Jensen Media Supplemented with Pyruvate or Glycerol, and the Combination of Both Supplements in a Single Lowenstein-Jensen Medium for the Growth Support of the Mycobacterium tuber- culosis Complex. International Journal of Mycobacteriology, 5, S169. https://doi.org/10.1016/j.ijmyco.2016.09.019
[30]
(2023) Paramètres influant la croissance microbienne. http://www.biologiemarine.com/micro/param.htm
[31]
Schröder, K.H., Naumann, L., Kroppenstedt, R.M. and Reischl, U. (1997) Myco- bacterium hassiacum sp. nov., a New Rapidly Growing Thermophilic Myco- bacterium. International Journal of Systematic and Evolutionary Microbiology, 47, 86-91. https://doi.org/10.1099/00207713-47-1-86
[32]
Radomski, N., Cambau, E., Moulin, L., Haenn, S., Moilleron, R. and Lucas, F.S. (2010) Comparison of Culture Methods for Isolation of Nontuberculous Mycobacteria from Surface Waters. Applied and Environmental Microbiology, 76, 3514-3520. https://doi.org/10.1128/AEM.02659-09
[33]
(2023) Mycobacteria Culture Medium and Method Including Mycobacteria of Mycobacterium tuberculosis Complex EP2364357B1. https://patentimages.storage.googleapis.com/f1/7e/4a/89cda41260b561/EP2364357B1.pdf
[34]
Ulmann, V., Modrá, H., Babak, V., Weston, R.T. and Pavlik, I. (2021) Recovery of Mycobacteria from Heavily Contaminated Environmental Matrices. Microorganisms, 9, Article 2178. https://doi.org/10.3390/microorganisms9102178
[35]
Neumann, M., Schulze-Robbecke, R., Hagenau, C. and Behringer, K. (1997) Comparison of Methods for Isolation of Mycobacteria from Water. Applied and Environmental Microbiology, 63, 547-552. https://doi.org/10.1128/aem.63.2.547-552.1997
[36]
Vincent Levy-Frebault, V. (1991) Ecologie des mycobactéries et mode de contamination humaine. Médecine et Maladies Infectieuses, 21, 16-25. https://doi.org/10.1016/S0399-077X(05)80114-3