全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Dynamical Behavior of One-Dimensional Real Maps: An Executable Dynamical Programming Software Approach

DOI: 10.4236/am.2023.149038, PP. 652-672

Keywords: One-Dimensional Map, Cobweb, Orbit Diagram, Fixed Point, the Fate of the Orbit

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dynamical behavior of real-world phenomena is implausible graphically due to the complexity of mathematical coding. The present article has mainly focused on some one-dimensional real maps’ dynamical behavior irrespective of using coding. In continuation, linear, quadratic, cubic, higher-order, exponential, logarithmic, and absolute value maps have been used to scrutinize their dynamical behavior, including the characteristics of the orbit of points. Dynamical programming software (DPS.exe) will be proposed as a new technique to ascertain the dynamical behavior of said maps. Thus, a mathematician can automatically determine one-dimensional real maps’ dynamical behavior apart from complicated programming code and analytical solutions.

References

[1]  Newton, I. (1729) The Mathematical Principles of Natural Philosophy (Vol. 2). 3rd Edition, William Dawson and Sons, London.
https://www.google.com.hk/books/edition/The_Mathematical_Principles_of_Natural_P/Tm0FAAAAQAAJ?hl=en&gbpv=0
[2]  Poincaré, H. (1967) New Methods of Celestial Mechanics. American Institute of Physics, Melville.
[3]  Poincaré, H. (1890) Chapitre I. Propriétésgénérales des équationsdifférentielles. Acta Mathematica, 13, 8-45.
https://doi.org/10.1007/bf02392507
[4]  Julia, G. (1918) Mémoiresurl’iteration des fonctionsrationnelles. Journal de Mathématiques Pureset Appliquées, 8, 47-245.
[5]  Fatou, P. (1917) Sur les substitutions rationnelles. Comptes Rendusdel Académie des Sciences de Paris, 164, 806-808.
[6]  Birkhoff, G.D. (1920) Recent Advances in Dynamics. Science, 51, 51-55.
https://doi.org/10.1126/science.51.1307.51
[7]  Smale, S. (1999) Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations. Journal of Nonlinear Science, 9, 363-415.
https://doi.org/10.1007/s003329900074
[8]  Lorenz, E.N. (1972) Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas. American Association for the Advancement of Science, Washington DC.
[9]  Robert, M.M. (1976) Simple Mathematical Models with Very Complicated Dynamics. Nature, 261, 459-467.
https://doi.org/10.1038/261459a0
[10]  Mandelbrot, B.B. (1983) The Fractal Geometry of Nature. American Journal of Physics, 51, 286-287.
https://doi.org/10.1119/1.13295
[11]  Douady, A. and Hubbard, J.H. (1984) Étude dynamique des polynômes complexes. Université de Paris-Sud, Paris.
https://pi.math.cornell.edu/~hubbard/OrsayFrench.pdf
[12]  Sullivan, J.M. (2012) Mathematical Pictures: Visualization, Art and Outreach. In: Behrends, E., Crato, N. and Rodrigues, J., Eds., Raising Public Awareness of Mathematics, Springer, Berlin, 279-293.
https://doi.org/10.1007/978-3-642-25710-0_21
[13]  de Melo, W. and van Strien, S. (1992) One-Dimensional Dynamics. Springer eBooks.
https://doi.org/10.1007/978-3-642-78043-1
[14]  Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G. and Fedorenko, V.V. (1997) Dynamics of One-Dimensional Maps. Springer, New York.
https://doi.org/10.1007/978-94-015-8897-3
[15]  Rodrigues, A. (2021) One-Dimensional Dynamical Systems: An Example-Led Approach. Chapman and Hall/CRC Press, New York.
https://doi.org/10.1201/9781003144618
[16]  Grandmont, J.M. (2021) Cycles and Chaos in Economic Equilibrium: Periodic and Aperiodic Behaviour in Discrete One-Dimensional Dynamical Systems. Princeton University Press eBooks, 44-63.
https://doi.org/10.2307/j.ctv19fvxt1.5
[17]  Sharkovsky, A.N. (2014) On the History of One-Dimensional Dynamics. ESAIM: Proceedings and Surveys, 46, 83-85.
https://doi.org/10.1051/proc/201446007
[18]  Elaydi, S. (2019) Global Dynamics of Discrete Dynamical Systems and Difference Equations. In: Elaydi, S., Pötzsche, C. and Sasu, A., Eds., ICDEA 2017: Difference Equations, Discrete Dynamical Systems and Applications, Springer, Cham, 51-81.
https://doi.org/10.1007/978-3-030-20016-9_3
[19]  Tanaka, S. (2019) Brain as a Dynamical System. Journal of Brain and Nerves, 71, 657-664.
[20]  Mehran, N.Z., Panahi, S., Hosseini, Z., Golpayegani, S.M.R.H. and Jafari, S. (2020) One Dimensional Map-Based Neuron Model: A Phase Space Interpretation. Chaos, Solitons & Fractals, 132, Article ID: 109558.
https://doi.org/10.1016/j.chaos.2019.109558
[21]  Clark, T., Strien, S.V. and Trejo, S. (2013) Complex Box Bounds for Real Maps. Communications in Mathematical Physics, 355, 1001-1119.
https://doi.org/10.1007/s00220-017-2958-y
[22]  Iwanaga, S. and Namatame, A. (2016) Contagion of Evacuation Decision Making on Real Map. Mobile Networks and Applications, 21, 206-214.
https://doi.org/10.1007/s11036-016-0704-x
[23]  Jia, X., Yujun, K., Enzhan, Z. and Weili, J. (2011) Research on Mobility Model for VANETs Based on Real Map. International Conference on Computational Problem-Solving (ICCP), Chengdu, 21-23 October 2011, 1-6.
https://doi.org/10.1109/ICCPS.2011.6089939
[24]  Joshi, Y. and Blackmore, D. (2012) Exponentially Decaying Discrete Dynamical Systems. Recent Patents on Space Technology, 2, 37-48.
https://doi.org/10.2174/1877611611202010037
[25]  Kozlovski, O. (2013) Periodic Attractors of Perturbed One-Dimensional Maps. Ergodic Theory and Dynamical Systems, 33, 1519-1541.
https://doi.org/10.1017/etds.2013.28
[26]  Rivera-Letelier, J.R. and Shen, W. (2014) Statistical Properties of One-Dimensional Maps under Weak Hyperbolicity Assumptions. arXiv: 1004.0230.
[27]  Bruin, H. and Vejnar, B. (2020) Classification of One Dimensional Dynamical Systems by Countable Structures. arXiv: 2006.14926.
[28]  Ohmori, S. and Yamazaki, Y. (2020) Ultradiscrete Bifurcations for One Dimensional Dynamical Systems. Journal of Mathematical Physics, 61, Article ID: 122702.
https://doi.org/10.1063/5.0012772
[29]  Sushko, I., Gardini, L. and Avrutin, V. (2016) Non-Smooth One-Dimensional Maps: Some Basic Concepts and Definitions. Journal of Difference Equations and Applications, 22, 1816-1870.
https://doi.org/10.1080/10236198.2016.1248426
[30]  Li, Q., Tang, S. and Feng, X. (2012) Computing 1D Discontinuous Boundaries of Dynamical Systems. 2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan, 23-25 May 2012, 1427-1430.
https://doi.org/10.1109/CCDC.2012.6244229
[31]  Ufuktepe, Ü. (2014) Applications of Discrete Dynamical Systems with Mathematicä. Conference: RIMSAt, Kyoto, February 2014.
[32]  Jorba, À., Rabassa, P. and Tatjer, J.C. (2016) Local Study of a Renormalization Operator for 1D Maps under Quasiperiodic Forcing. Discrete & Continuous Dynamical Systems, 9, 1171-1188.
https://doi.org/10.3934/dcdss.2016047
[33]  Khmou, Y., Said, S. and Frikel, M. (2018) A Comparison of Entropy Metrics in 1D Discrete Dynamical System. 1st International Conference on Signals, Automation and Telecommunications, Beni Mellal, 2-4 May 2018.
[34]  Bashkirtseva, I. and Tsvetkov, I. (2018) Impact of the Parametric Noise on Map-Based Dynamical Systems. AIP Conference Proceedings, 2025, Article ID: 040004.
https://doi.org/10.1063/1.5064888
[35]  Ballard, T., Palada, H., Griffin, M. and Neal, A. (2019) An Integrated Approach to Testing Dynamic, Multilevel Theory: Using Computational Models to Connect Theory, Model, and Data. Organizational Research Methods, 24, 251-284.
https://doi.org/10.1177/1094428119881209
[36]  Medrano, F.F. and Solis, F.J. (2015) Stability of Real Parametric Polynomial Discrete Dynamical Systems. Discrete Dynamics in Nature and Society, 2015, Article ID: 680970.
https://doi.org/10.1155/2015/680970
[37]  Bai, Y., Bilige, S. and Chaolu, T. (2018) Potential Symmetries, One-Dimensional Optimal System and Invariant Solutions of the Coupled Burgers’ Equations. Journal of Applied Mathematics and Physics, 6, 1825-1839.
https://doi.org/10.4236/jamp.2018.69156
[38]  Xiang, C. and Wang, H. (2019) Ground-State Energy and Entropy for One-Dimensional Heisenberg Chain with Alternating D-Term. Journal of Applied Mathematics and Physics, 7, 1220-1225.
https://doi.org/10.4236/jamp.2019.75082
[39]  Devaney, R.L. and Choate, J. (2000) Chaos: A Tool Kit of Dynamics Activities. Key Curriculum Press, Emeryville.
[40]  Layek, G.C. (2015) An Introduction to Dynamical Systems and Chaos. Springer, New Delhi.
https://doi.org/10.1007/978-81-322-2556-0
[41]  Lynch, S. (2007) Dynamical Systems with Applications Using Mathematica. Birkhauser, New York.
[42]  Kulenovic, M.R.S. and Merino, O. (2002) Discrete Dynamical Systems and Difference Equations with Mathematica. CRC Press, New York.
[43]  Lynch, S. (2004) Dynamical Systems with Applications Using MATLAB. Birkhäuser, Boston.
https://doi.org/10.1007/978-0-8176-8156-2
[44]  Lynch, S. (2010) Dynamical Systems with Applications Using Maple. Birkhäuser, Boston.
https://doi.org/10.1007/978-0-8176-4605-9
[45]  Nicola, B., Luigi, P. and Antonio, R. (2000) Mechanics and Dynamical Systems with Mathematica. Springer, New York.
[46]  Lipschutz, S. and Poe, A. (1982) Programming with FORTRAN. McGraw-Hill, Singapore.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133