Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, must be counted. The micro (frequency dispersion phenomena) and macro (interfacial polarization), as well as more generalized by Nernst-Planck cells describe the biophysical aspects of this phenomena. The charge distribution depends on the processes and produces charge gradients in space. The dynamic feasibility of the-charge transition layer has memory and adaptability, working like a memristor in cancerous development. The memristor processes may complete the adaptation mechanisms of cancer cells to extremely stressful conditions. Our objective is to show the distribution and redistribution of space charges that generate memristors and internal currents like injury current (IC) in the development of cancer. We show some connected aspects of the modulated electrohyperthermia (mEHT) limiting the proliferation process in the micro-range like the macro-range electrochemotherapy (ECT) processes do. The internal polarization effects form space-charge, which characteristically differ in malignant and healthy environments. The electrical resistivity of the electrolytes depends on the distribution of the charges and concentrations of ions in the electrolytes, consequently the space-charge differences appear in the conductivity parameters too. The polarization heterogeneities caused by the irregularities of the healthy tissue induce a current (called injury current), which appears in the cancerous tumor as well. Due to the nonlinearity of the space-charge production and the differences of the relaxation time of the processes in various subunits. The tumor develops the space-charge which appears as an inductive component in the otherwise capacitive setting and forms a memristive behavior of the tumorous tissue. This continuously developing space-charge accommodates the tumor to the permanently changing conditions and helps the adopting the malignant cells in the new environment. Applying external radiofrequency electric field, the disturbance of the space-charge may change the conditions, and seek to reestablish the healthy homeostatic equilibrium, blocking the pathologic injury current components. The hypothetical memristive behavior of the tumor microenvironment and the tumor mass may be a biophysical addition to the adaption mechanisms of tumor cell and could provide a way to block the pathogen biophysical processes. An electric field in the
References
[1]
Robinson, A.J., Jain, A., Sherman, H.G., Hague, R.J.M., Rahman, R., Sanjuan-Albere, P. and Rawson, F.J. (2020) Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. Advanced Therapeutics, 4, Article 2000248. https://doi.org/10.1002/adtp.202000248
[2]
Zhong, S., Yao, S., Zhao, Q., Wang, Z., Liu, Z., Li, L. and Wang, L.Z. (2023) Electricity-Assisted Cancer Therapy from Traditional Clinic Applications to Emerging Methods Integrated with Nanothechnologies. Advanced NanoBiomed Research, 3, Article 2200143. https://doi.org/10.1002/anbr.202200143
[3]
Szasz, A.M., Minnaar, C.A., Szentmartoni, G., et al. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article 1012. https://doi.org/10.3389/fonc.2019.01012
[4]
Love, M.R., Palee, S., Chattipakorn, S.C. and Chattipakorn, N. (2018) Effects of Electrical Stimulation on Cell Proliferation and Apoptosis. Journal of Cellular Physiology, 233, 1860-1876. https://doi.org/10.1002/jcp.25975
[5]
Krenacs, T., Meggyeshazi, N., Forika, G., et al. (2020) Modulated Electro-Hyper-thermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, Article 6270. https://doi.org/10.3390/ijms21176270
[6]
Lee, S.Y. and Szasz, A. (2022) Immunogenic Effect of Modulated Electro-Hyperthermia (mEHT) in Solid Tumors. In: Interdisciplinary Cancer Research. Springer, Cham, 1-28. https://doi.org/10.1007/16833_2022_74
[7]
Qin, W., Akutsu, Y., Andocs, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379. https://doi.org/10.3892/or.2014.3500
[8]
Bryant, D.M. and Mostov, K.E. (2008) From Cells to Organs: Building Polarized Tissue. Nature Reviews Molecular Cell Biology, 9, 887-901. https://doi.org/10.1038/nrm2523
[9]
Foulds, I.S. and Barker, A.T. (1983) Human Skin Battery Potentials and Their Possible Role in Wound Healing. British Journal of Dermatology, 109, 515-522. https://doi.org/10.1111/j.1365-2133.1983.tb07673.x
[10]
Cope, F.W. (1969) Nuclear Magnetic Resonance Evidence Using D2O for Structured Water in Muscle and Brain. Biophysical Journal, 9, 303-319. https://doi.org/10.1016/S0006-3495(69)86388-5
[11]
Leveen, H.H., Wapnick, S., Piccone, V., Falk, G. and Ahmed, N. (1976) Tumor Eradication by Radiofrequency Therapy. JAMA, 235, 2198-2200. https://doi.org/10.1001/jama.235.20.2198
[12]
Zhu, M.X. (2011) TRP Channels, Methods in Signal Transduction. CRC Press, Boca Raton, FL.
[13]
Catterall, W.A. (2010) Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology. Neuron, 67, 915-928. https://doi.org/10.1016/j.neuron.2010.08.021
[14]
Okamura, Y., Kawanabe, A. and Kawai, T. (2018) Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiological Reviews, 87, 2097-3231. https://doi.org/10.1152/physrev.00056.2017
[15]
Liboff, A.R. (2013) Ion Cyclotron Resonance Interactions in Living Systems. Atti Iv Convegno Nacionale, Pavia, Societa Italiana Biofisica Elettrodinamica, 19 October 2013.
Laity, R.W. (1962) Diffusion of Ions in an Electric Field. The Journal of Chemical Physics, 67, 671-676. https://doi.org/10.1021/j100797a032
[18]
Challis, L. (2005) Mechanisms for Interaction between RF Fields and Biological Tissue. Bioelectromagnetics, 26, S98-S106. https://doi.org/10.1002/bem.20119
[19]
Alberts, B., Johnson, A., Lewis, J., et al. (2002) Molecular Biology of the Cell. 4th Edition, Garland Science, New York.
[20]
Fried, S.D. and Boxer, S.G. (2017) Electric Fields and Enzyme Catalysis. Annual Review of Biochemistry, 86, 387-415. https://doi.org/10.1146/annurev-biochem-061516-044432
[21]
Goldman, D.E. (1943) Potential, Impedance, and Rectification in Membranes. Journal of General Physiology, 27, 37-60. https://doi.org/10.1085/jgp.27.1.37
[22]
Ramachandran, S., Blick, R.H. and van der Weide, D.W. (2010) Radio-Frequency Rectification on Membrane Bound Pores. Nanotechnology, 21, Article 075201. https://doi.org/10.1088/0957-4484/21/7/075201
[23]
Tanaka, A. and Tokimasa, T. (1999) Theoretical Background for Inward Rectification. Tokai Journal of Experimental and Clinical Medicine, 24, 147-153.
[24]
Astumian, R.D., Weaver, J.C. and Adair, R.K. (1995) Rectification and Signal Averaging of Weak Electric Fields by Biological Cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 3740-3743. https://doi.org/10.1073/pnas.92.9.3740
[25]
Gimsa, J., Marszalek, P., Loewe, U., et al (1991) Dielectrophoresis and Electrorotation of Neurospora Slime and Murine Myeloma Cells. Biophysical Journal, 60, 749-760. https://doi.org/10.1016/S0006-3495(91)82109-9
[26]
Zhao, M., Forrester, J.V. and McCaig, A.D. (1999) A Small, Physiological Electric Field Orients Cell Division. Proceedings of the National Academy of Sciences of the United States of America, 96, 4942-4946. https://doi.org/10.1073/pnas.96.9.4942
[27]
Kamp, F., Astumian, R.D. and Wesrethoff, H.V. (1988) Coupling of Vectorial Proton Flow to a Biochemical Reaction by Local Electric Interactions. Proceedings of the National Academy of Sciences of the United States of America, 85, 3792-3796. https://doi.org/10.1073/pnas.85.11.3792
[28]
Tsong, T.Y. and Chang, C-H. (2003) Ion Pump as Brownian Motor: Theory of Electroconformational Coupling and Proof of Ratchet Mechanism for Na,K-ATPase Action. Physica A, 321, 124-138. https://doi.org/10.1016/S0378-4371(02)01793-4
[29]
Clejan, S., Ide, C., Wlalker, C., et al. (1996) Electromagnetic Field Induced Changes in Lipid Second Messengers. Journal of Lipid Mediators and Cell Signalling, 13, 301-324. https://doi.org/10.1016/0929-7855(95)00062-3
[30]
Schwan, H.P. (1938) Biophysics of the Interaction of Electromagnetic Energy with Cells and Membranes. In: Grandolfo, M., Michaelson, S.M. and Rindi, A., Eds., Biological Effects and Dosimetry of Nonionizing Radiation, Plenum Press, New York, 213-231. https://doi.org/10.1007/978-1-4684-4253-3_9
[31]
Marszalek, P., Liu, D.-S. and Tsong, T.Y. (1990) Schwan Equation and Transmembrane Potential Induced by Alternating Electric Field. Biophysical Journal, 58, 1053-1058. https://doi.org/10.1016/S0006-3495(90)82447-4
[32]
Broude, N., et al. (1994) Correlation between the Amplitude of Plasma Membrane Fluctuations and the Response of Cells to Electric and Magnetic Fields. Bioelectrochemistry and Bioenergetics, 33, 19-23. https://doi.org/10.1016/0302-4598(94)87028-4
[33]
Burgos-Panadero, R., Lucantoni, F., Gamero-Sandermetrio, E., de la Cruz-Merino, L., Alvaro, T. and Noguera, R. (2019) The Tumour Microenvironment as an Integrated Framework to Understand Cancer Biology. Cancer Letters, 461, 112-122. https://doi.org/10.1016/j.canlet.2019.07.010
[34]
Hsu, P.P. and Sabatini, D.M. (2008) Cancer Metabolism: Warburg and Beyond. Cell, 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
[35]
Egebald, M., Nakasone, E.S. and Werb, Z. (2010) Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Developmental Cell, 18, 884-901. https://doi.org/10.1016/j.devcel.2010.05.012
[36]
Bloch, N. and Harel, D. (2016) The Tumor as an Organ: Comprehensive Spatial and Temporal Modeling of the Tumor and Its Microenvironment. BMC Bioinformatics, 17, Article No. 317. https://doi.org/10.1186/s12859-016-1168-5
[37]
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
[38]
Warburg, O. (1996) Oxygen, the Creator of Differentiation, Biochemical Energetics. In: Warburg, O., Ed., The Prime Cause and Prevention of Cancer, Academic Press, New York, 37-54.
[39]
Garber, K. (2004) Energy Boost: The Warburg Effect Returns in a New Theory of Cancer. Journal of the National Cancer Institute, 96, 1805-1806. https://doi.org/10.1093/jnci/96.24.1805
[40]
Oehr, P., Biersack, H.J. and Coleman, RE. (2004) PET and PET-CT in Oncology. Springer Verlag, Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-18803-9
[41]
Vaupel, P. and Piazena, H. (2022) Strong Correlation between Specific Heat Capacity and Water Content in Human Tissues Suggests Preferred Heat Deposition in Malignant Tumors upon Electromagnetic Irradiation. International Journal of Hyperthermia, 39, 987-997. https://doi.org/10.1080/02656736.2022.2067596
[42]
Silva, A.S., Yunes, J.A., Gillies, R.J. and Gatenby, R.A. (2009) The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Acid-Mediated Invasion. Cancer Research, 69, 2677-2684. https://doi.org/10.1158/0008-5472.CAN-08-2394
[43]
Alfarouk, K.O., Ahmed, S.B.M., Ahmed, A., Elliott, R.L., Ibrahim, M.E., Ali, H.S., et al. (2020) The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel), 12, Article 898. https://doi.org/10.3390/cancers12040898
[44]
Chaudhary, S.S., Mishra, R.K., Swarup, A. and Thomas, J.M. (1984) Dielectric Properties of Normal & Malignant Human Breast Tissues at Radiowave & Microwave Frequencies. Indian Journal of Biochemistry and Biophysics, 21, 76-79.
[45]
Surowiec, A.J., Stuchly, SS., Barr, J.R. and Swarup, A. (1988) Dielectric Properties of Breast Carcinoma and the Surrounding Tissues. IEEE Transactions on Biomedical Engineering, 35, 257-263. https://doi.org/10.1109/10.1374
[46]
Joines, W.T., Zhang, Y., Li, C. and Jirtle, R.L. (1994) The Measured Electrical Properties of Normal and Malignant Human Tissues from 50 to 900 MHz. Medical Physics, 21, 547-550. https://doi.org/10.1118/1.597312
[47]
Sha, L., et al. (2002) A Review of Dielectric Properties of Normal and Malignant Breast Tissue. Proceedings IEEE SoutheastCon 2002, Columbia, 5-7 April 2002, 457-462.
[48]
Gutierrez-Lopez, M., Prado-Olivarez, J., Diaz-Carmona, J., Herrera-Ramirez, C.A., Gutierrez-Gnecchi, J.A. and Medina-Sánchez, C.G. (2019) Electrical Impedance-Based Methodology for Locating Carcinoma Emulators on Breast Models. Journal of Sensors, 2019, Article ID: 8587191. https://doi.org/10.1155/2019/8587191
[49]
Smith, S.R., Foster, K.R. and Wolf, G.L. (1986) Dielectric Properties of VX-2 Carcinoma versus Normal Liver Tissue. IEEE Transactions on Biomedical Engineering, BME-33, Article 522525. https://doi.org/10.1109/TBME.1986.325740
[50]
Haemmerich, D., et al. (2003) In Vivo Electrical Conductivity of Hepatic Tumors. Physiological Measurement, 24, 251-260. https://doi.org/10.1088/0967-3334/24/2/302
[51]
Joines, W.T., Jirtle, R.L., Rafal, M.D. and Schaefer, D.J. (1980) Microwave Power Absorption Differences between Normal and Malignant Tissue. International Journal of Radiation Oncology·Biology·Physics, 6, 681-687. https://doi.org/10.1016/0360-3016(80)90223-0
[52]
Babaeizadeh, S. (2007) 3-D Electrical Impedance Tomography of Piecewise Constant Domains with Known Internal Boundaries. IEEE Transactions on Biomedical Engineering, 54, 2-10. https://doi.org/10.1109/TBME.2006.886839
[53]
Abdulla, U.G., Bukshtynov, V. and Seif, S. (2020) Cancer Detection through Electrical Impedance Tomography and Optimal Control Theory: Theoretical and Computational Analysis. Mathematical Biosciences and Engineering, 18, 4834-4859. https://doi.org/10.3934/mbe.2021246
[54]
Zou, Y. and Guo, Z. (2003) A Review of Electrical Impedance Techniques for Breast Cancer Detection, Medical Engineering and Physics, 25, 79-90. https://doi.org/10.1016/S1350-4533(02)00194-7
[55]
Scholz, B. and Anderson, R. (2000) On Electrical Impedance Scanning—Principles and Simulations. Electromedica, 68, 35-44.
[56]
Muftuler, T.L., Hamamura, M.J., Birgul, O. and Nalcioglu, O. (2006) In Vivo MRI Electrical Impedance Tomography (MREIT) of Tumors. Technology in Cancer Research & Treatment, 5, 381-387.
[57]
Mikac, U., Demsar, F., Beravs, K. and Sersa, I. (2001) Magnetic Resonance Imaging of Alternating Electric Currents. Magnetic Resonance Imaging, 19, 845-856. https://doi.org/10.1016/S0730-725X(01)00393-9
[58]
Joy, M., Scott, G. and Henkelman, M. (1989) In Vivo Detection of Applied Electric Currents by Magnetic Resonance Imaging. Magnetic Resonance Imaging, 7, 49-54. https://doi.org/10.1016/0730-725X(89)90328-7
[59]
Seersa, I., Beravs, K., Dodd, N.J.F., et al. (1997) Electric Current Imaging of Mice Tumors. MRM, 37, 404-409. https://doi.org/10.1002/mrm.1910370318
[60]
Scott, G.C., Joy, M.L.G., Armstrong, R.L. and Henkelman, R.M. (1995) Electromagnetic Considerations for RF Current Density Imaging. IEEE Transactions on Medical Imaging, 14, 515-524. https://doi.org/10.1109/42.414617
[61]
Hossain, S. (2020) Biodielectric Phenomenon for Actively Differentiating Malignant and Normal Cells: An Overview. Electromagnetic Biology and Medicine, 39, 89-96. https://doi.org/10.1080/15368378.2020.1737804
[62]
Trainito, C.I., Sweeney, D.C., Cemazar, J., Schmelz, E.M., Francais, O., Le Pioufle, B. and Davalos, R.V. (2019) Characterization of Sequentially-Staged Cancer Cells Using Electrorotation. PLOS ONE, 14, e0222289. https://doi.org/10.1371/journal.pone.0222289
[63]
Mavromatos, N.E. (2017) Non-Linear Dynamics in Biological Microtubules: Solitons and Dissipation-Free Energy Transfer. Journal of Physics: Conference Seriesr, 880, Article 012010. https://doi.org/10.1088/1742-6596/880/1/012010
[64]
Damadian, R. (1971) Tumor Detection by Nuclear Magnetic Resonance. Science, 171, 1151-1153. https://doi.org/10.1126/science.171.3976.1151
[65]
Cope, F.W. (1975) A Review of the Applications of Solid State Physics Concepts to Biological Systems. Journal of Biological Physics, 3, 1-41. https://doi.org/10.1007/BF02308900
[66]
Hazlewood, C.F., Nichols, B.L. and Chamberlain, N.F. (1969) Evidence for the Existence of a Minimum of Two Phases of Ordered Water in Skeletal Muscle. Nature, 222, 747-750. https://doi.org/10.1038/222747a0
[67]
Hazlewood, C.F., Chang, D.C., Medina, D., et al. (1972) Distinction between the Preneoplastic and Neoplastic State of Murine Mammary Glands. Proceedings of the National Academy of Sciences of the United States of America, 69, 1478-1480. https://doi.org/10.1073/pnas.69.6.1478
[68]
Chidanbaram, R. and Ramanadham, M. (1991) Hydrogen Bonding in Biological Molecules—An Update. Physica B, 174, 300-305. https://doi.org/10.1016/0921-4526(91)90621-K
[69]
Stern, R.G., Milestone, B.N. and Gatenby, R.A. (1999) Carcinogenesis and the Plasma Membrane. Medical Hypotheses, 52, 367-372. https://doi.org/10.1054/mehy.1997.0657
[70]
Levin, M. (2007) Large-Scale Biophysics: Ion Flows and Regeneration. Trends in Cell Biology, 17, 261-269. https://doi.org/10.1016/j.tcb.2007.04.007
[71]
Alves, A.C., et al. (2016) Biophysics in Cancer: The Relevance of Drug-Membrane Interaction Studies. Biochimica et Biophysica Acta, 1858, 2231-2244. https://doi.org/10.1016/j.bbamem.2016.06.025
[72]
Gniadecka, M., Nielsen, O.F. and Wulf, H.C. (2003) Water Content and Structure in Malignant and Benign Skin Tumors. Journal of Molecular Structure, 661-662, 405-410. https://doi.org/10.1016/j.molstruc.2003.08.030
[73]
Beall, P.T., et al. (1979) Water-Relaxation Times of Normal, Preneoplastic, and Malignant Primary Cell Cultures of Mouse Mammary Gland. 23rd Annual Meeting of the Biophysical Society, Atlanta, 26-28 February 1979, A238-A238.
[74]
Chung, S.H., Cerussi, A.E., Klifa, C., et al. (2008) In Vivo Water State Measurements in Breast Cancer Using Broadband Diffuse Optical Spectroscopy. Physics in Medicine & Biology, 53, 6713-6727. https://doi.org/10.1088/0031-9155/53/23/005
[75]
Foster, K.R. and Schepps, J.L. (1981) Dielectric Properties of Tumor and Normal Tissues at Radio through Microwave Frequencies. Journal of Microwave Power, 16, 107-119. https://doi.org/10.1080/16070658.1981.11689230
[76]
Szentgyorgyi, A. (1980) The Living State and Cancer. Physiological Chemistry and Physics, 12, 99-110.
[77]
Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekker, New York.
[78]
Blad, B. and Baldetorp, B. (1996) Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electric Impedance Tomography. Physiological Measurement, 17, A105-A115. https://doi.org/10.1088/0967-3334/17/4A/015
[79]
Dubois, J.-M. and Rouzaire-Dubois, B. (2004) The Influence of Cell-Volume Changes on Tumor Cell Proliferation. European Biophysics Journal, 33, 227-232. https://doi.org/10.1007/s00249-003-0364-1
[80]
McRae, D.A. and Esrick, M.A. (1993) Changes in Electrical Impedance of Skeletal Muscle Measured during Hyperthermia. International Journal of Hyperthermia, 9, 247-261. https://doi.org/10.3109/02656739309022538
[81]
Szasz, O. and Szasz, A. (2016) Considering Skin Physiology in Capacitive-Coupled Hyperthermia. Journal of Advances in Physics, 11, 3966-3972. https://cirworld.com/index.php/jap/article/view/206 https://doi.org/10.24297/jap.v11i8.206
[82]
Blad, B., Wendel, P., Jönsson, M., et al. (1999) An Electrical Impedance Index to Distinguish between Normal and Cancerous Tissues. Journal of Medical Engineering & Technology, 23, 57-62. https://doi.org/10.1080/030919099294294
[83]
Szentgyorgyi, A. (1968) Bioelectronics: A Study on Cellular Regulations, Defense, and Cancer. Academic Press, New York, London.
[84]
Blicher, A., Wodzinska, K., Fidorra, M., Winterhalter, M. and Heimburg, T. (2009) The Temperature Dependence of Lipid Membrane Permeability, Its Quantized Nature, and the Influence of Anesthetics. Biophysical Journal, 96, 4581-4591. https://doi.org/10.1016/j.bpj.2009.01.062
[85]
McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. (2005) Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiological Reviews, 85, 943-978. https://doi.org/10.1152/physrev.00020.2004
[86]
Enderle, J. (2005), Bioelectric Phenomena. In: Enderle, J.D., Blanchard, S.M. and Bronzino, J.D., Eds., Introduction to Biomedical Engineering (Second Edition), Biomedical Engineering, Academic Press, Boston, 627-691. https://doi.org/10.1016/B978-0-12-238662-6.50013-6
[87]
Gross, L. (2006) Membrane Oscillations Keep Neurons on the Right Track. PLOS Biology, 4, e191. https://doi.org/10.1371/journal.pbio.0040191
[88]
Faisal, A.A., Selen, L.P.J. and Wolpert, D.M. (2008) Noise in the Nervous System. Nature Reviews Neuroscience, 9, 292-303. https://doi.org/10.1038/nrn2258
[89]
Schaeffer, A.T., Angelo, K., Spors, H. and Margrie, T.W. (2006) Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision. PLOS Biology, 4, e163. https://doi.org/10.1371/journal.pbio.0040163
[90]
Wang, Y., et al. (2021) Correlation between Electrical Characteristics and Biomarkers in Breast Cancer Cells. Scientific Reports, 11, Article No. 14294. https://doi.org/10.1038/s41598-021-93793-6
[91]
Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901. https://doi.org/10.3390/cancers14040901
[92]
Debye, P. (1913) Zur Theorie der anomalen dispersion im Gebiete der langwelligen Elektrischen Strahlung. Druck von Friedr. Vieweg & Sohn.
[93]
Schwan, H.P. (1963) Determination of Biological Impedances. In: Nastuk, W.L., Ed., Electrophysiological Methods: Physical Techniques in Biological Research, Academic Press, New York, 323-406. https://doi.org/10.1016/B978-1-4831-6743-5.50013-7
[94]
Schwan, H.P., Takashima, S., Miyamoto, V.K. and Stoeckenius, W. (1970) Electrical Properties of Phospholipid Vesicles. Biophysical Journal, 10, 1102-1119. https://doi.org/10.1016/S0006-3495(70)86356-1
[95]
Ivey, J.W., Bonakdar, M., Kanitkar, A., Davalos, R.V. and Verbridge, S.S. (2016) Improving Cancer Therapies by Targeting the Physical and Chemical Hallmarks of the Tumor Microenvironment. Cancer Letters, 380, 330-339. https://doi.org/10.1016/j.canlet.2015.12.019
[96]
Mafe, S., Pellicer, J. and Aguilella, V.M. (1986) Ionic Transport and Space Charge Density in Electrolytic Solutions as Described by Nernst-Planck and Poisson Equations. The Journal of Physical Chemistry, 90, 6045-6050. https://doi.org/10.1021/j100280a117
[97]
Szigeti, G., Szasz, A.M. and Szasz, A. (2020) The Growth of Healthy and Cancerous Tissues. Open Journal of Biophysics, 10, 113-128. https://doi.org/10.4236/ojbiphy.2020.103010
[98]
Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
[99]
Szasz, O. (2019) Bioelectromagnetic Paradigm of Cancer Treatment—Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 9, 98-109. https://doi.org/10.4236/ojbiphy.2019.92008
[100]
Ferenczy, G.L. and Szasz, A. (2020) Chap. 3. Technical Challenges and Proposals in Oncological Hyperthermia. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars Publishing, Newcastle upon Tyne, 72-90. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[101]
Szasz, A. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia, Open Journal of Biophysics, 11, 252-313. https://doi.org/10.4236/ojbiphy.2021.113010
[102]
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science, Heidelberg. https://doi.org/10.1007/978-90-481-9498-8
[103]
Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electro-Magnetic Field in Tumor Cell Killing, Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126. https://doi.org/10.1007/s00066-009-1903-1
[104]
Bielfeldt, M., Rebl, H., Peters, K., Sridharan, K., Staehlke, S. and Nebe, J.B. (2022) Sensing of Physical Factors by Cells: Electric Field, Mechanical Forces, Physical Plasma and Light—Importance for Tissue Regeneration. Biomedical Materials and Devices. https://doi.org/10.1007/s44174-022-00028-x
[105]
Brumleve, T.R. and Buck, R.P. (1978) Numerical Solution of the Nernst-Planck and Poisson Equation System with Applications to Membrane Electrochemistry and Solid State Physics. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 90, 1-31. https://doi.org/10.1016/S0022-0728(78)80137-5
[106]
Schauble, M.K. and Habal, M.B. (1969) Electropotentials of Tumor Tissue. Journal of Surgical Research, 9, S17-S20. https://doi.org/10.1016/0022-4804(69)90127-9
[107]
Stubbe, M. and Gimsa, J. (2015) Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells. Biophysical Journal, 109, 194-208. https://doi.org/10.1016/j.bpj.2015.06.021
[108]
Caduff, A., Talary, M.S. and Zakharov, P. (2010) Cutaneous Blood Perfusion as a Perturbing Factor for Noninvasive Glucose Monitoring. Diabetes Technology & Therapeutics, 12, 1-9. https://doi.org/10.1089/dia.2009.0095
[109]
Schwan, H.P. (1982) Nonthermal Cellular Effects of Electromagnetic Fields: AC-Field Induced Ponderomotoric Forces. British Journal of Cancer, 45, 220-224.
[110]
Pething, R. (1979) Dielectric, and Electronic Properties of Biological Materials. John Wiley and Sons, New York.
[111]
Szasz, O., Andocs, G., Kondo, T., Rehman, M.U., Papp, E. and Vancsik, T. (2015) Heating of Membrane Raft of Cancer-Cells. ASCO Annual Meeting. Journal of Clinical Oncology, 33, e22176. https://doi.org/10.1200/jco.2015.33.15_suppl.e22176
[112]
Asami, K. (2002) Characterization of Biological Cells by Dielectric Spectroscopy. Journal of Non-Crystalline Solids, 305, 268-277. https://doi.org/10.1016/S0022-3093(02)01110-9
[113]
Pauly, H. and Schwan, H.P. (1959) Uber die Impedanz einer Suspension von Kugelformigen Teilchen mit einer Schale. Zeitschrift für Naturforschung B, 14, 125-131. https://doi.org/10.1515/znb-1959-0213
[114]
Stoy, R.D., Foster, K.R. and Schwan, H.P. (1982) Dielectric Properties of Mammalian Tissues from 0.1 to 100 MHz: A Summary of Recent Data. Physics in Medicine and Biology, 27, 501-513. https://doi.org/10.1088/0031-9155/27/4/002
[115]
Gotz, M., Karsch, L. and Pawelke, J. (2017) A New Model for Volume Recombination in Plane-Parallel Chambers in Pulsed Fields of High Dose-per-Pulse. Physics in Medicine & Biology, 62, 8634-8654. https://doi.org/10.1088/1361-6560/aa8985
[116]
Minnaar, C.A. and Szasz, A. (2022) Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells, 11, Article 1838. https://doi.org/10.3390/cells11111838
[117]
Szasz, A. (2022) Stimulation and Control of Homeostasis. Open Journal of Biophysics, 12, 89-131. https://doi.org/10.4236/ojbiphy.2022.122004
[118]
Chua, L. (1971) Memristor—The Missing Circuit Element. IEEE Transactions on Circuit Theory, 18, 507-519. https://doi.org/10.1109/TCT.1971.1083337
[119]
Chua, L. and Kang, S.M. (1976) Memristive Devices and Systems. Proceedings of the IEEE, 64, 209-223. https://doi.org/10.1109/PROC.1976.10092
[120]
DiVentra, M., Pershin, Y.V. and Chua, L.O. (2009) Putting Memory into Circuit Elements: Memristors, Memcapacitors and Meminductors. Proceedings of the IEEE, 97, 1371-1372. https://doi.org/10.1109/JPROC.2009.2022882
[121]
Cole, K.S. and Baker, R.F. (1940) Transverse Impedance of the Squid Giant Axon during Current Flow. Journal of General Physiology, 24, 535-549. https://doi.org/10.1085/jgp.24.4.535
[122]
Cole, K.S. and Baker, R.F. (1941) Membrane Potential of the Squid Giant Axon during Current Flow. Journal of General Physiology, 24, 551-563. https://doi.org/10.1085/jgp.24.4.551
[123]
Cole, K.S. and Baker, R.F. (1941) Longitudinal Impedance of the Squid Giant Axon. Journal of General Physiology, 24, 771-788. https://doi.org/10.1085/jgp.24.6.771
[124]
Cole, K.S. (1941) Rectification and Inductance in the Squid Giant Axon. Journal of General Physiology, 25, 29-51. https://doi.org/10.1085/jgp.25.1.29
[125]
Hodgkin, A.L. and Huxley, A.F. (1952) A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. The Journal of Physiology, 117, 500-544. https://doi.org/10.1113/jphysiol.1952.sp004764
[126]
Bou, A. and Bisquert, J. (2021) Impedance Spectroscopy Dynamics of Biological Neural Elements: From Memristors to Neurons and Synapses. The Journal of Physical Chemistry B, 125, 9934-9949. https://doi.org/10.1021/acs.jpcb.1c03905
[127]
Bisquert, J. (2022) Hopf Bifurcations in Electrochemical, Neuronal, and Semiconductor Systems Analysis by Impedance Spectroscopy. Applied Physics Reviews, 9, Article 011318. https://doi.org/10.1063/5.0085920
[128]
Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S. (2008) The Missing Memristor Found. Nature, 453, 80-83. https://doi.org/10.1038/nature06932
[129]
Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J. and Fontana, M.P. (2011) Material Memristive Device Circuits with Synaptic Plasticity: Learning and Memory. BioNanoSci, 1, 24-30. https://doi.org/10.1007/s12668-011-0004-7
[130]
Sung, H.J., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P. and Lu, W. (2010) Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters, 10, 1297-1301. https://doi.org/10.1021/nl904092h
[131]
Wang, S., Song, L., Chen, W., Wang, G., Hao, E., Li, C., Hu, Y., et al. (2022) Memristor-Based Intelligent Human-Like Neural Computing. Advanced Electronic Materials, 9, Article 2200877. https://doi.org/10.1002/aelm.202200877
[132]
Johnsen, G.K. (2012) An Introduction to the Memristor: A Valuable Circuit Element in Bioelectricity and Bioimpedance. Journal of Electrical Bioimpedance, 3, 20-28. https://doi.org/10.5617/jeb.305
[133]
Homsi, R., Al-Azzam, N., Mohammad, B. and Alazzam, A. (2023) Memristive Biosensors for Cancer Biomarkers Detection: A Review. IEEE Access, 11, 19347-19361. https://doi.org/10.1109/ACCESS.2023.3248683
[134]
Tuszynski, J.A., Friesen, D., Freedman, H., Sbitnev, V.I., Kim, H., Santelices, I., et al. (2020) Microtubules as Sub-Cellular Memristors. Scientific Reports, 10, Article No. 2108. https://doi.org/10.1038/s41598-020-58820-y
[135]
Chua, L., Sbitnev, V. and Kim, H. (2012) Hodgkin-Huxley Axon Is Made of Memristors. International Journal of Bifurcation and Chaos, 22, Article 1230011. https://doi.org/10.1142/S021812741230011X
[136]
Poulsen, S.B., Fenton, R.A. and Rieg, T. (2015) Sodium-Glucose Cotransport. Current Opinion in Nephrology and Hypertension, 24, 463-469. https://doi.org/10.1097/MNH.0000000000000152
[137]
Rosch, P.J. and Markov, M.S. (2004) Bioelectromagnetic Medicine. Marcel Dekker Inc., New York. https://doi.org/10.3109/9780203021651
[138]
Buck, R.C. (1985) Measurement of Centripetal Migration of Normal Corneal Epithelial Cells in the Mouse. Investigative Ophthalmology & Visual Science, 26, 1296-1299.
[139]
Zhao, M. (2009) Electrical Fields in Wound Healing—An Overriding Signal That Directs Cell Migration. Seminars in Cell & Developmental Biology, 20, 674-682. https://doi.org/10.1016/j.semcdb.2008.12.009
[140]
Huttenlocher, A. (2007) Wound Healing with Electric Potential. The New England Journal of Medicine, 356, 304-305. https://doi.org/10.1056/NEJMcibr066496
[141]
Song, B., Zhao, M., Forrester, J.V., et al. (2002) Electrical Cues Regulate the Orientation and Frequency of Cell Division and the Rate of Wound Healing in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 13577-13582. https://doi.org/10.1073/pnas.202235299
[142]
Reid, B., McCaig, C.D., Zhao, M., et al. (2005) Wound Healing in Rat Cornea: The Role of Electric Currents. The FASEB Journal, 19, 379-386. https://doi.org/10.1096/fj.04-2325com
[143]
Barker, A.T., Jaffe, L.F. and Vanable Jr., J.W. (1982) The Glabrous Epidermis of Cavies Contains a Powerful Battery. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 242, R358-R366. https://doi.org/10.1152/ajpregu.1982.242.3.R358
[144]
Samuelsson, L., Jonsson, L. and Stahl, E. (1983) Percutaneous Treatment of Pulmonary Tumors by Electrolysis. Radiologie, 23, 284-287. https://doi.org/10.1016/0011-2275(83)90154-6
[145]
Song, B., Zhao, M., Forrester, J., et al. (2004) Nerve Regeneration and Wound Healing Are Stimulated and Directed by an Endogenous Electrical Field in Vivo. Journal of Cell Science, 117, 4681-4690. https://doi.org/10.1242/jcs.01341
[146]
Carbon, M., Wübbeler, G., Mackert, B.-M., et al. (2004) Non-Invasive Magnetic Detection of Human Injury Currents. Clinical Neurophysiology, 115, 1027-1032. https://doi.org/10.1016/j.clinph.2003.12.035
[147]
Reid, B., Nuccitelli, R. and Zhao, M. (2007) Non-Invasive Measurement of Bioelectric Currents with a Vibrating Probe. Nature Protocols, 2, 661-669. https://doi.org/10.1038/nprot.2007.91
[148]
Mackert, B.-M., Mackert, J., Wubbeler, G., Armbrust, F., Wolff, K.-D., Burghoff, M., Trahms, L. and Curio, G. (1999), Magnetometry of Injury Currents from Human Nerve and Muscle Specimens Using Superconducting Quantum Interferences Devices. Neuroscience Letters, 262, 163-166. https://doi.org/10.1016/S0304-3940(99)00067-1
[149]
Becker, R.O. and Selden, G. (1985) The Body Electric. Morrow, New York.
[150]
Becker, R.O. (1990) Cross Currents. Jeremy P Tarcher Inc., Los Angeles.
[151]
Kloth, L.C. (2005), Electrical Stimulation for Wound Healing: A Review of Evidence from in Vitro Studies, Animal Experiments, and Clinical Trials. The International Journal of Lower Extremity Wounds, 4, 23-44. https://doi.org/10.1177/1534734605275733
[152]
Cheng, K., Tarjan, P., Oliveira-Gandia, M., et al. (1995) An Occlusive Dressing Can Sustain Natural Electrical Potential of Wounds. Journal of Investigative Dermatology, 104, 662-665.
[153]
Zhao, M., Song, B., Pu, J., et al. (2006) Electrical Signals Control Wound Healing through Phosphatidylinositol-3-OH Kinase-γ and PTEN. Nature, 442, 457-460. https://doi.org/10.1038/nature04925
[154]
Reid, B., Nuccitelli, R. and Zhao, M. (2007) Non-Invasive Measurement of Bioelectric Currents with a Vibrating Probe. Nature Protocols, 3, 661-670. https://doi.org/10.1038/nprot.2007.91
[155]
Binggeli, R. and Weinstein, R.C. (1986) Membrane Potentials and Sodium Channels: Hypotheses for Growth Regulation and Cancer Formation Based on Changes in Sodium Channels and Gap Junctions. Journal of Theoretical Biology, 123, 377-401. https://doi.org/10.1016/S0022-5193(86)80209-0
[156]
James, A.M., Ambrose, E.J. and Lowick, J.H.B. (1956) Differences between the Electrical Charge Carried by Normal and Homologous Tumor Cells. Nature, 177, 576-577. https://doi.org/10.1038/177576a0
[157]
Mycielska, M.E. and Djamgoz, M.B.A. (2004) Cellular Mechanisms of Direct-Current Electric Field Effects: Galvanotaxis and Metastatic Disease. Journal of Cell Science, 117, 1631-1639. https://doi.org/10.1242/jcs.01125
[158]
Pu, J., McCaig, C.D., Cao, L., et al. (2007) EGF Receptor Signalling Is Essential For Electric-Field-Directed Migration of Breast Cancer Cells. Journal of Cell Science, 120, 3395-3403. https://doi.org/10.1242/jcs.002774
[159]
Meng, X. and Riordan, N.H. (2006) Cancer Is a Functional Repair Tissue. Medical Hypotheses, 66, 486-490. https://doi.org/10.1016/j.mehy.2005.09.041
[160]
Fan, S.-J., Kroeger, B., Marie, P.P., Bridges, E.M., Mason, J.D., McCormick, K., et al. (2020) Glutamine Deprivation Alters the Origin and Function of Cancer Cell Exosomes. The EMBO Journal, 39, e103009. https://doi.org/10.15252/embj.2019103009
[161]
Loewenstein, W.R. (1999) The Touchstone of Life, Molecular Information, Cell Communication and the Foundations of the Life. Oxford University Press, Oxford, New York, 298-304.
[162]
Taghian, T., Narmoneva, D.A. and Kogan, A.B. (2005) Modulation of Cell Function by Electric Field: A High-Resolution Analysis. Journal of the Royal Society Interface, 12, Article 20150153. https://doi.org/10.1098/rsif.2015.0153
[163]
Bard, A.J. and Faulkner, L.R. (2000) Electrochemical Methods, Fundamentals and Applications. John Wiley & Sons Inc., New York.
[164]
Moqadam, S.M., Grewal, P.K., Haeri, Z., Ingledew, P.A., Kohli, K. and Golnaraghi, F. (2018) Cancer Detection Based on Electrical Impedance Spectroscopy: A Clinical Study. Journal of Electrical Bioimpedance, 9, 17-23. https://doi.org/10.2478/joeb-2018-0004