|
机器学习算法教学实践与探索:以线性回归为例
|
Abstract:
随着当今人工智能技术的迅速发展和广泛应用,机器学习作为其重要组成部分彰显出关键性作用。然而,机器学习领域的知识涵盖范围广泛、更新快速且难度较大,给教师和学生带来了巨大挑战,特别是针对非计算机专业的经管类本科生,缺乏针对性的教学经验。本文以线性回归为例,探讨了一种融合理论与实践的机器学习算法教学方法。通过简洁的理论讲解算法原理,然后引导学生运用实际数据进行操作,涵盖数据预处理、模型训练和评估等步骤,这种方法有助于学生从被动地接受知识转变为主动学习并参与实践,深化对算法的理解,也有助于机器学习课程的设计与改进。
With the rapid development and widespread application of today’s artificial intelligence technol-ogy, machine learning plays a crucial role as a significant component. However, the field of ma-chine learning encompasses a wide range of knowledge, updates swiftly, and presents substantial challenges for both educators and students. This challenge is particularly pronounced for non- computer science majors, such as business and management undergraduate students, who lack tailored teaching experience. This paper takes linear regression as an example to explore a blended approach to teaching machine learning algorithms that integrates theory and practice. Through concise theoretical explanations of algorithm principles, students are guided to apply practical data and cover steps like data preprocessing, model training, and evaluation. This method facilitates the transformation of students from passive knowledge recipients to active participants in practical applications, thereby deepening their understanding of algorithms. It also holds potential for the design and enhancement of machine learning courses.
[1] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
[2] | 赵娟娟, 强彦. Python机器学习[M]. 北京: 机械工业出版社, 2019. |
[3] | 张乐飞, 罗勇, 杜博. 机器学习教学改革与人工智能人才培养[J]. 中国大学教学, 2023(5): 18-21. |
[4] | 文乐, 陈有华. 面向经管类专业的《机器学习》课程教学模式探索——以朴素贝叶斯分类算法为例[J]. 教育现代化, 2021, 8(60): 163-166. |
[5] | 王重仁. 财经类高校机器学习课程教学探索与实践[J]. 中国管理信息化, 2023, 26(3): 212-215. |
[6] | 王雷全, 吴春雷, 郭晓菲. 机器学习科研实践课程建设[J]. 电子世界, 2017(17): 50-51. |
[7] | 陈强. 机器学习及Python应用[M]. 北京: 高等教育出版社, 2021. |
[8] | 黄瑞章. 面向本科生的机器学习课程教学改革探讨[J]. 黑龙江科学, 2021, 12(3): 128-129. |
[9] | 赵雪峰, 施珺. 面向本科生机器学习课程的教学探索[J]. 计算机教育, 2021(2): 170-174. |
[10] | 邓子云. 深入机器学习[M]. 北京: 中国水利水电出版社, 2023. |