Hydroelectric reservoirs have environmental impacts as many other sources of energy. Regarding hydropower, these
effects include flooding cultivated and forest areas, changes in water
quality, negative impacts on water biodiversity, conflict with indigenous
people and fish migration. In the nineties, researchers put in evidence of another important impact of dam construction: the greenhouse gases generated by
flooding organic matter by reservoir flooding. Scientists argue that
like natural human water bodies, the
hydropower reservoirs emit biogenic gases into the
atmosphere. The diffusive gas flux is associated
with the difference between gas partial pressure of each
chemical substance considering the aquatic system and the
atmosphere. Ebullition is a process where
some chemical substances are not soluble in water and bubbles are formed
in the sediment at the bottom of the reservoir.
Ebullition is often the dominant pathway of CH4that is released from aquatic ecosystems. The phenomenon is episodic and irregular and depends mainly on hydrostatic pressure and
other physical influences
References
[1]
Abe, D. S., Adams, D. D., Galli, C. V. S., Sikar, E., & Tundisi, J. G. (2005). Sediment Greenhouse Gases (Methane and Carbon Dioxide) in the Lobo-Broa Reservoir, São Paulo State, Brazil: Concentrations and Diffuse Emission Fluxes for Carbon Budget Considerations. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 10, 201-209. https://doi.org/10.1111/j.1440-1770.2005.00277.x
[2]
Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., dos Santos, M. A., & Matvienko, B. (2005). Carbon Dioxide and Methane Emissions and the Carbon Budget of a 10-Year Old Tropical Reservoir (Petit Saut, French Guiana). Global Biogeochemical Cycles, 19, GB4007. https://doi.org/10.1029/2005GB002457
[3]
Adams, D. D. (1994). Sampling Sediment Pore Water. In A. Mudroch & S. D. MacKnight (Eds.), Handbook of Techniques for Aquatic Sediments Sampling (2nd ed., pp. 171-202). CRC Press.
[4]
Aselmann, I., & Crutzen, P. J. (1989). Global Distribution of Natural Freshwater Wetlands and Rice Paddies, Their Net Primary Productivity, Seasonality and Possible Methane Emissions. Journal of Atmospheric Chemistry, 8, 307-358. https://doi.org/10.1007/BF00052709
[5]
Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon Emission from Hydroelectric Reservoirs Linked to Reservoir Age and Latitude. Nature Geoscience, 4, 593-596. https://doi.org/10.1038/ngeo1211
[6]
Bartlett, K. B., & Harris, R. C. (1993). Review and Assessment of Methane Emissions from Wetlands. Chemosphere, 26, 261-321. https://doi.org/10.1016/0045-6535(93)90427-7
[7]
Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004). Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments and Global Estimate. Global Biogeochemical Cycles, 18, GB4007. https://doi.org/10.1029/2004GB002238
[8]
Cicerone, R. J., & Oreroland, R. S. (1988). Biogeochemical Aspects of Atmospheric Methane. Global Biogeochemical Cycles, 2, 299-327. https://doi.org/10.1029/GB002i004p00299
[9]
Cole, J. J., & Caraco, N. F. (1998). Atmospheric Exchange of Carbon Dioxide in a Low-Wind Oligotrophic Lake Measured by the Addition of SF6. Limnology and Oceanography, 43, 647-656. https://doi.org/10.4319/lo.1998.43.4.0647
[10]
Dean, W. E., & Gorham, E. (1998). Magnitude and Significance of Carbon Burial in Lakes, Reservoirs, and Peatlands. Geology, 26, 535-538. https://doi.org/10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2
[11]
Del Giorgio, P. A., Colen, J. J., Caraco, N. F., & Peters, R. H. (1998). Linking Planktonic Biomass and Metabolism to Net Gas Fluxes in Northern Temperate Lakes. Ecology, 80, 1422-1431. https://doi.org/10.1890/0012-9658(1999)080[1422:LPBAMT]2.0.CO;2
[12]
Dumestre, J.-F., Casamayor, E. O., Massana, R., & Pedrós-Alios, C. (2001). Changes in Bacterial and Archaeal Assemblages in an Equatorial River Induced by the Water Eutrophication of Petit Saut Dam Reservoir (French Guiana). Aquatic Microbial Ecology, 26, 209-221. https://doi.org/10.3354/ame026209
[13]
Dumestre, J.-F., Valquer, A., Gosse, P., Richard, S., & Labroue, L. (1999). Bacterial Ecology of a Young Equatorial Hydroelectric Reservoir (Petit Saut, French Guiana). Hydrobiologia, 400, 75-83. https://doi.org/10.1023/A:1003707129170
[14]
Engle, D., & Melack, J. (2000). Methane Emissions from an Amazon Floodplain Lake: Enhanced Release during Episodic Mixing and during Falling Water. Biogeochemistry, 51, 71-90. https://doi.org/10.1023/A:1006389124823
[15]
Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J.-F., Labroue, L., Richard, S., & Gosse, P. (1997). Gaseous Emissions and Oxygen Consumption in Hydroelectric Dams: A Case Study in French Guyana. Global Biogeochemical Cycles, 11, 471-483. https://doi.org/10.1029/97GB01625
[16]
Guérin, F., Abril, G., Richard, S. et al. (2006). Methane and Carbon Dioxide Emissions from Tropical Reservoirs: Significance of Downstream Rivers. Geophysical Research Letters, 33, Article No. L21407. https://doi.org/10.1029/2006GL027929
[17]
Hamilton, S. K., Sippe, S. J., & Melack, J. M. (1995). Oxygen Depletion and Carbon Dioxide and Methane Production in Waters of the Pantanal Wetland of Brazil. Biochemistry, 30, 115-141. https://doi.org/10.1007/BF00002727
[18]
IEAHydro (2018). Managing the Carbon Balance in Freshwater Reservoirs Guidelines for Quantitative Analysis of Net GHG Emissions from Reservoirs. Volume 3—Management, Mitigation and Allocation. IEA Technology Collaboration Programme on Hydropower, IEA.
[19]
Joyce, J., & Jewell, P. W (2003). Physical Controls on Methane Ebulition from Reservoirs and Lakes. Environmental and Engineering Geoscience, 9, 167-178. https://doi.org/10.2113/9.2.167
[20]
Keller, M., & Stallard, R. F. (1994). Methane Emission by Bubbling at the Gatun Lake, Panama. Journal of Geophysical Research: Atmospheres, 99, 8307-8319. https://doi.org/10.1029/92JD02170
[21]
Kelly, C. A., Rudd, J. W. M., Bodaly, R. A., Roulet, N. P., St. Louis, V. L., Heyes, A., Moore, T. R., Schiff, S., Aravena, R., Scott, K. J., Dyck, B., Harris, R., Warner, B., & Edwards, G. (1997). Increases in Fluxes of Greenhouse Gases and Methyl Mercury following Flooding of an Experimental Reservoir. Environmental Science Technology, 31, 1334-1344. https://doi.org/10.1021/es9604931
[22]
Kortelainen, P., Pajunen, H., Rantakari, M., & Saarnisto, M. (2004). A Large Carbon Pool and Small Sink in Boreal Holocene Lake Sediments. Global Change Biology, 10, 1648-1653. https://doi.org/10.1111/j.1365-2486.2004.00848.x
[23]
Marani, L., & Alvalá, P. C. (2007). Methane Emissions from Lakes and Floodplains in Pantanal, Brazil. Atmospheric Environment, 41, 1627-1633. https://doi.org/10.1016/j.atmosenv.2006.10.046
[24]
Mulholand, P. J., & Elwood, J. W. (1982). The Role of Lake and Reservoir Sediments as Sinks in the Perturbed Global Carbon Cycle. Tellus A, 34, 490-499. https://doi.org/10.3402/tellusa.v34i5.10834
[25]
Ritchie, J. C. (1989). Carbon Content of Sediments of Small Reservoirs. JAWRA Journal of the American Water Resources Association, 25, 301-308. https://doi.org/10.1111/j.1752-1688.1989.tb03065.x
[26]
Roehm, C., & Tremblay, A. (2006). Role of Turbines in the Carbon Dioxide Emissions from Two Boreal Reservoirs, Quebec, Canada. Journal of Geophysical Research: Atmospheres, 111, D24101. https://doi.org/10.1029/2006JD007292
[27]
Roland, F., Vidal, L. O., Pacheco, F. S., Barros, N. O., Assireu, A., Ometto, J. P. H. B. et al. (2010). Variability of Carbon Dioxide Flux from Tropical (Cerrado) Hydroelectric Reservoirs. Aquatic Science, 72, 283-293. https://doi.org/10.1007/s00027-010-0140-0
[28]
Rosa, L. P., Santos, M. A., Mativienko, B., Sikar, E., Lourenço, R. S. M., & Menezes, C. F. (2003). Biogenic Gas Production from Major Amazon Reservoirs, Brazil. Hydrology Process, 17, 1443-1450. https://doi.org/10.1002/hyp.1295
[29]
Rosa, L. P., Schaeffer, R., & Santos, M. A. (1994). Projeto ambiental das hidrelétricas na Amazônia: Emissões de metano e dioxido de carbono de hidrelétricas na amazônia comparada às das termelétricas equivalentes. Relatório 1-94, PPE, ELETROBRAS.
[30]
Rudd, J. W. M., & Hamilton, R. D. (1978). Methane Cycling in a Eutrophic Shield Lake and Its Effects on Whole Lake Metabolism. Limnology and Oceanography, 23, 337-348. https://doi.org/10.4319/lo.1978.23.2.0337
[31]
Rudd, J. W. M., Harris, R., Kelly, C. A., & Hecky, R. E. (1993). Are Hydroelectric Reservoirs Significant Sources of Greenhouse Gases? AMBIO, 22, 246-248.
[32]
Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., Santos, E. O., (2006). Gross Greenhouse Gas Fluxes from Hydro-Power Reservoir Compared to Thermo-Power Plants. Energy Policy, 34, 481-488. https://doi.org/10.1016/j.enpol.2004.06.015
[33]
Striegl, R. G., & Michmerhuizen, C. M. (1998). Hydrologic Influence on Methane and Carbon Dioxide Dynamics at Two North-Central Minnesota Lakes. Limnology and Oceanography, 43, 1519-1529. https://doi.org/10.4319/lo.1998.43.7.1519
[34]
Syvitski, J. P. M., Vorosmarty, C J, Kettner, A. J., & Green, P. (2005). Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 308, 376-380. https://doi.org/10.1126/science.1109454
[35]
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G. Ballatore, T. J. et al. (2009). Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54, 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
[36]
Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E., & Ledrew, L. J. (2005). GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In A. Tremblay, L. Varfalvy, C. Roehm, & M. Garneau (Eds.), Greenhouse Gas Emissions—Fluxes and Processes. Environmental Science (pp. 209-232). Springer. https://doi.org/10.1007/978-3-540-26643-3_9
[37]
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla D., & Chapin, F. S. (2006). Methane Bubbling from Siberian Thaw Lakes as a Positive Feedback to Climate Warming. Nature, 443, 71-75. https://doi.org/10.1038/nature05040
[38]
Wuebbles, D. J., & Hayhoe, K. (2002). Atmospheric Methane and Global Change. Earth-Science Reviews, 57, 177-210. https://doi.org/10.1016/S0012-8252(01)00062-9