|
纳米碳化硅的制备与应用研究进展
|
Abstract:
纳米碳化硅(SiC)材料因具有耐磨、耐腐蚀、强度高、高热导等优良的物理与化学性质而备受关注,其作为多功能材料可广泛用于国防、航空、汽车工业、化工、机械工业、电子工业和生物陶瓷等领域。本文在国内外相关文献的基础上,重点介绍了纳米SiC的常用制备方法及相关领域的潜在应用,并对纳米SiC的研究前景提出建议。本文对纳米SiC的进一步深入研究具有积极的意义。
Nano-SiC materials have attracted great concern because of its excellent physical and chemical properties such as wear-resistance, corrosion resistance, high temperature strength, high thermal conductivity. As a multi-functional material, it can be widely used in the fields of national defense, aviation, automotive industry, chemical industry, machinery industry, electronics industry and bioceramics and other fields. Based on the relevant literature at home and abroad, this paper focuses on the common preparation methods of nano-SiC and the potential applications in related fields, the research prospect of nano-SiC is also proposed. This paper has posi-tive significance for further research on nano-SiC.
[1] | 和丽芳. 纳米碳化硅材料的制备及应用[D]: [硕士学位论文]. 太原: 山西大学, 2011. |
[2] | 董博, 余超, 邓承继, 等. 碳化硅陶瓷导热性能的研究进展[J]. 材料工程, 2023, 51(1): 64-75. |
[3] | 刘超, 邢雪青, 史颖, 等. 纳米SiC增强铝基复合材料中增强颗粒含量对材料结构和性能的影响[J]. 塑料科技, 2021, 49(10): 59-64. |
[4] | 开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. |
[5] | Zhou, D. and Seraphin, S. (1994) Production of Silicon Carbide Whiskers from Carbon Nanoclusters. Chemical Physics Letters, 222, 233-238. https://doi.org/10.1016/0009-2614(94)00342-4 |
[6] | Choyke, W.J. and Pensl, G. (1997) Physical Properties of SiC. MRS Bulletin, 22, 25-29.
https://doi.org/10.1557/S0883769400032723 |
[7] | Su, J., Gao, B., Chen, Z., et al. (2016) Large-Scale Synthesis and Mechanism of β-SiC Nanoparticles from Rice Husks by Low-temperature Magnesiothermic Reduction. ACS Sustainable Chemistry & Engineering, 4, 6600-6607.
https://doi.org/10.1021/acssuschemeng.6b01483 |
[8] | 戴长虹, 水丽. 碳化硅超细粉的制备新法[J]. 中国粉体技术, 2001, 7(1): 10-11. |
[9] | Keller, N., Pham-Huu, C., Ehret, G., Keller, V. and Ledoux, M.J. (2003) Synthesis and Characterisation of Medium Surface Area Silicon Carbide Nanotubes. Carbon, 41, 2131-2139. https://doi.org/10.1016/S0008-6223(03)00239-2 |
[10] | Sun, X.-H., Li, C.-P., Wong, W.-K., et al. (2002) For-mation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. Journal of the American Chemical Society, 124, 14464-14471. https://doi.org/10.1021/ja0273997 |
[11] | 王冬华. 溶胶-凝胶和碳热还原法制备高比表面积碳化硅[J]. 化工新型材料, 2011, 39(9): 74-91. |
[12] | Chen, Y., Zhang, C., Li, L., et al. (2019) Hybrid Anodic and Metal-Assisted Chemical Etching Method Enabling Fabrication of Silicon Carbide Nanowires. Small, 15, Article ID: 1803898. https://doi.org/10.1002/smll.201803898 |
[13] | Shi, W., Zheng, Y., Peng, H., Wang, N., Lee, C.S. and Lee, S.-T. (2000) Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. Journal of the American Ceramic Society, 83, 3228-3230.
https://doi.org/10.1111/j.1151-2916.2000.tb01714.x |
[14] | Zhu, J., Liu, Z., Wu, X.L., et al. (2007) Luminescent Small-Diameter 3C-SiC Nanocrystals Fabricated via a Simple Chemical Etching Method. Nanotechnology, 18, Ar-ticle ID: 365603. https://doi.org/10.1088/0957-4484/18/36/365603 |
[15] | 李昀珺, 铁生年, 李星. 碳化硅纳米材料研究进展[J]. 青海科技, 2008, 15(6): 52-56. |
[16] | Zhou, X.T., Wang, N., Au, F.C.K., et al. (2000) Growth and Emission Properties of β-SiC Nanorods. Materials Science & Engineering A, 286, 119-124. https://doi.org/10.1016/S0921-5093(00)00654-7 |
[17] | Attolini, G., Rossi, F., Negri, M., et al. (2014) Growth of SiC NWs by Vapor Phase Technique Using Fe as Catalyst. Materials Letters, 124, 169-172. https://doi.org/10.1016/j.matlet.2014.03.061 |
[18] | 梁博, 黄政仁, 江东亮, 等. 化学气相沉积法制备SiC纳米粉[J]. 无机材料学报, 1996(3): 441-447. |
[19] | Leu, I.-C., Lu, Y.-M. and Hon, M.-H. (1998) Factors Determining the Diameter of Silicon Carbide Whiskers Prepared by Chemical Vapor Deposition. Materials Chemistry and Physics, 56, 256-361.
https://doi.org/10.1016/S0254-0584(98)00189-8 |
[20] | Ju, Z., Xing, Z., Guo, C., Yang, L., Xu, L. and Qian, Y. (2008) Sulfur-Assisted Approach for the Low-Temperature Synthesis of β-Sic Nanowires. European Journal of Inorganic Chemistry, 2008, 3883-3888.
https://doi.org/10.1002/ejic.200800198 |
[21] | Xi, G., Liu, Y., Liu, X., Wang, X. and Qian, Y. (2006) Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures. Journal of Physical Chemistry B, 110, 14172-14178. https://doi.org/10.1021/jp0617468 |
[22] | Dasong, M., Smith, L.F., Purkait, T.K. and Veinot, J.G.C. (2013) Low Temperature Synthesis of Silicon Carbide Nanomaterials Using a Solid-State Method. Chemical Communications, 44, 7004-7006.
https://doi.org/10.1039/c3cc43625j |
[23] | Shi, Y., Zhang, F., Hu, Y.-S., et al. (2010) Low-Temperature Pseu-domorphic Transformation of Ordered Hierarchical Macro-Mesoporous SiO2/C Nanocomposite to SiC via Magne-siothermic Reduction. Journal of the American Chemical Society, 132, 5552-5553. https://doi.org/10.1021/ja1001136 |
[24] | 乔冠军, 金志浩. 碳化硅粉体制备技术[J]. 硅酸盐通报, 1993, 12(3): 34-39. |
[25] | 张洪涛, 徐重阳, 许辉华. Sol-Gel 法制备纳米碳化硅粉体的研究[J]. 功能材料, 2000, 31(4): 366-368. |
[26] | 陈静. 一种碳化硅纳米线的合成方法[J]. 淮阴工学院学报, 2006, 15(3): 50-52, 56. |
[27] | 张立德, 牟季美. 纳米材料与纳米结构[M]. 北京: 科学出版社, 2001: 34-48, 116-139, 490-491. |
[28] | Garcfa-Caurel, E., Viera, G., Bertran, E. and Canillas, A. (1999) Characterization of Silicon and Silicon Carbide Nanometric Powder Using Infrared Phase Modulated Ellipsometry. Advances in Science and Technology, 14, 317-321. |
[29] | Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997) Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nano-rods and Nanotubes. Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971 |
[30] | An, Q., Chen, J., Ming, W. and Chen, M. (2021) Machining of SiC Ceramic Matrix Composites: A Review. Chinese Journal of Aeronautics, 34, 540-567. https://doi.org/10.1016/j.cja.2020.08.001 |
[31] | Lu, X.-F. and Xiao, P. (2013) Preparation of in Situ Grown Silicon Carbide Nanofibers Radially onto Carbon Fibers and Their Effects on the Microstructure and Flexural Properties of Carbon/Carbon Composites. Carbon, 59, 176-183.
https://doi.org/10.1016/j.carbon.2013.03.007 |
[32] | Akbarpour, M.R., Salahi, E., Hesari, F.A., et al. (2013) Microstructural Development and Mechanical Properties of Nanostructured Copper Reinforced with SiC Nanopar-ticles. Materials Science & Engineering A, 568, 33-39.
https://doi.org/10.1016/j.msea.2013.01.010 |
[33] | Fu, Q.-G., Jia, B.-L., Li, H.-J., Li, K.-Z. and Chu, Y.-H. (2012) SiC Nanowires Reinforced MAS Joint of SiC Coated Carbon/Carbon Composites to LAS Glass Ceramics. Materials Science & Engineering A, 532, 255-259.
https://doi.org/10.1016/j.msea.2011.10.088 |
[34] | Wu, R., Zhou, K., Wei, J., et al. (2012) Growth of Tapered SiC Nanowires on Flexible Carbon Fabric: Toward Field Emission Applications. Journal of Physical Chemistry C, 116, 12940-12945. https://doi.org/10.1021/jp3028935 |
[35] | Pan, Z., Lai, H.-L., Au, F.C.K., et al. (2000) Ori-ented Silicon Carbide Nanowires: Synthesis and Field Emission Properties. Advanced Materials, 12, 1186-1190.
https://doi.org/10.1002/1521-4095(200008)12:16<1186::AID-ADMA1186>3.0.CO;2-F |
[36] | Gao, F., Zheng, J., Wang, M., Wei, G. and Yang, W. (2011) Piezoresistance Behaviors of P-Type 6H-SiC Nanowires. Chemical Communications, 47, 11993-11995. https://doi.org/10.1039/c1cc14343c |
[37] | Wang, H.Y., Wang, Y.Q., Hu, Q.F. and Li, X.J. (2012) Capacitive Humidity Sensing Properties of SiC Nanowires Grown on Silicon Nanoporous Pillar Array. Sensors and Actuators B: Chemical, 166-167, 451-456.
https://doi.org/10.1016/j.snb.2012.02.087 |
[38] | Tuci, G., Liu, Y., Rossin, A., et al. (2021) Porous Silicon Car-bide (SiC): A Chance for Improving Catalysts or Just another Active-Phase Carrier? Chemical Reviews, 121, 10559-10665. https://doi.org/10.1021/acs.chemrev.1c00269 |
[39] | Shao, R., Zheng, K., Zhang, Y., et al. (2012) Piezoresistance Behaviors of Ultra-Strained SiC Nanowires. Applied Physics Letters, 101, Article ID: 233109. https://doi.org/10.1063/1.4769217 |
[40] | 肖益鸿, 郑勇, 蔡国辉, 等. 纳米SiC的合成及其作为载体在CO氧化反应中的应用[J]. 应用化学, 2008, 25(11): 1311-1314. |
[41] | Chen, Y., Zhang, X. and Xie, Z. (2015) Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage. ACS Nano, 9, 8054-8063. https://doi.org/10.1021/acsnano.5b01784 |
[42] | Alper, J.P., Kim, M.S., Vincent, M., et al. (2013) Silicon Car-bide Nanowires as Highly Robust Electrodes for Micro-Supercapacitors. Journal of Power Sources, 230, 298-302. https://doi.org/10.1016/j.jpowsour.2012.12.085 |
[43] | 崔若鹏, 耿志挺, 王琪, 等. 碳化硅材料吸波性能的研究[J]. 材料科学, 2021, 11(5): 593-600. |
[44] | Chiu, S.-C., Yu, H.-C. and Li, Y.-Y. (2010) High Electromagnetic Wave Absorption Performance of Silicon Carbide Nanowires in the Gigahertz Range. Journal of Physical Chemistry C, 114, 1947-1952.
https://doi.org/10.1021/jp905127t |
[45] | Zhao, D.-L., Luo, F. and Zhou, W.-C. (2010) Microwave Absorbing Property and Complex Permittivity of Nano SiC Particles Doped with Nitrogen. Journal of Alloys & Compounds, 490, 190-194.
https://doi.org/10.1016/j.jallcom.2009.09.008 |