全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浅水磁流体方程的高分辨率熵稳定格式
High-Resolution Entropy Stable Scheme for Shallow Water Magnetohydrodynamics Equations

DOI: 10.12677/AAM.2023.129400, PP. 4076-4089

Keywords: 浅水磁流体方程,熵稳定格式,高分辨率,斜率限制器
Shallow Water Magnetohydrodynamics Equation
, Entropy Stable Scheme, High-Resolution, Slope Limiter

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文构造了一种求解浅水磁流体方程(Shallow Water Magnetohydrodynamics Equations,简称为SWMHD方程)的高分辨率熵稳定格式(ES2)。主要构造过程是将一种基于MUSCL (Monotone Up-stream-centred Scheme for Conservation Laws)型重构方法的新型斜率限制器应用于SWMHD方程的熵稳定格式(ES)中,得到了具有二阶精度的高分辨率熵稳定格式,该格式在间断区域通过合理控制耗散的方式有效地抑制了非物理现象的产生。将新构造的格式(ES2)和熵稳定格式(ES),熵守恒格式(C)应用于一维和二维SWMHD方程问题求解中,数值结果表明,该格式能够准确地捕捉解的结构,在光滑区域达到了高阶精度,且在间断区域没有非物理振荡。
In this paper, a high-resolution entropy stable scheme (ES2) is constructed to solve the shallow wa-ter magnetohydrodynamics equations (SWMHD equation). The main construction process is to ap-ply a new slope limiter based on MUSCL (Monotone Upstream-centred Scheme for Conservation Laws) type reconstruction method to the entropy stable scheme (ES) of the SWMHD equation, and obtain a high-resolution entropy stable scheme with second-order accuracy, which effectively sup-presses the occurrence of non-physical phenomena by reasonably controlling dissipation in the discontinuous region. The newly constructed scheme (ES2), entropy stable scheme (ES), and entro-py conservation scheme (C) are applied to solve the one-dimensional and two-dimensional SWMHD equation problems, and the numerical results show that the scheme can accurately capture the structure of the solutions, achieve high-order accuracy in the smooth region, and have no non-physical oscillations in the discontinuous region.

References

[1]  Gilman, P.A. (2000) Magnetohydrodynamic “Shallow Water” Equations for the Solar Tachocline. The Astrophysical Journal, 544, L79.
https://doi.org/10.1086/317291
[2]  Spiegel, E.A. and Zahn, J.P. (1992) The Solar Tachocline. Astronomy and Astrophysics, 265, 106-114.
[3]  Lax, P.D. (1954) Weak Solutions of Non-Linear Hyperbolic Equa-tions and Their Numerical Computations. Communications on Pure and Applied Mathematics, 7, 159-193.
https://doi.org/10.1002/cpa.3160070112
[4]  Lax, P.D. (1973) Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611970562.ch1
[5]  Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws. I. Mathematics of Computation, 49, 91-103.
https://doi.org/10.1090/S0025-5718-1987-0890255-3
[6]  Roe, P.L. (2006) Entropy Conservation Schemes for Euler Equations. Talk at HYP 2006, Lyon.
[7]  Ismail, F. and Roe, P.L. (2009) Affordable, Entropy-Consistent Euler Flux Functions II: Entropy Production at Shocks. Journal of Computational Physics, 228, 5410-5436.
https://doi.org/10.1090/S0025-5718-1987-0890255-3
[8]  Liu, Y., Feng, J. and Ren, J. (2015) High Resolution, Entropy-Consistent Scheme Using Flux Limiter for Hyperbolic Systems of Conservation Laws. Journal of Scientific Computing, 64, 914-937.
https://doi.org/10.1007/s10915-014-9949-3
[9]  任璇. 基于斜率限制器的高分辨率熵相容格式研究[D]: [硕士学位论文]. 西安: 长安大学, 2021.
[10]  沈亚玲, 封建湖, 郑素佩, 等. 一种基于新型斜率限制器的理想磁流体方程的高分辨率熵相容格式[J]. 计算物理, 2022, 39(3): 297-308.
[11]  高凡琪, 封建湖, 郑素佩, 等. 相对论流体力学方程的高分辨率熵相容格式[J]. 应用数学进展, 2022, 11(12): 8691-8703.
[12]  Kr?ger, T. and Luká?o-vá-Medvid’ová, M. (2005) An Evolution Galerkin Scheme for the Shallow Water Magnetohydrodynamic Equations in Two Space Dimensions. Journal of Computational Physics, 206, 122-149.
https://doi.org/10.1016/j.jcp.2004.11.031
[13]  Qamar, S. and Warnecke, G. (2006) Application of Space-Time CE/SE Method to Shallow Water Magnetohydrodynamic Equations. Journal of Computational and Applied Mathemat-ics, 196, 132-149.
https://doi.org/10.1016/j.cam.2005.08.014
[14]  Zia, S., Ahmed, M. and Qamar, S. (2014) Numerical Solution of Shallow Water Magnetohydrodynamic Equations with Non-Flat Bottom Topography. International Journal of Computa-tional Fluid Dynamics, 28, 56-75.
https://doi.org/10.1080/10618562.2014.891019
[15]  Kemm, F. (2016) Roe-Type Schemes for Shallow Water Magnetohydrodynamics with Hyperbolic Divergence Cleaning. Applied Mathematics and Computation, 272, 385-402.
https://doi.org/10.1016/j.amc.2015.05.079
[16]  Ahmed, S. and Zia, S. (2019) The Higher-Order CESE Method for Two-Dimensional Shallow Water Magnetohydrodynamics Equations. European Journal of Pure and Applied Mathe-matics, 12, 1464-1482.
[17]  Winters, A.R. and Gassner, G.J. (2016) An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics. Journal of Scientific Computing, 67, 514-539.
https://doi.org/10.1007/s10915-015-0092-6
[18]  Duan, J. and Tang, H. (2021) High-Order Accurate Entropy Sta-ble Finite Difference Schemes for the Shallow Water Magnetohydrodynamics. Journal of Computational Physics, 431, Article ID: 110136.
https://doi.org/10.1016/j.jcp.2021.110136
[19]  Tadmor, E. (2003) Entropy Stability Theory for Difference Ap-proximations of Nonlinear Conservation Laws and Related Time-Dependent Problems. Acta Numerica, 12, 451-512.
https://doi.org/10.1017/S0962492902000156
[20]  Tóth, G. (2000) The ? × B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes. Journal of Computational Physics, 161, 605-652.
https://doi.org/10.1006/jcph.2000.6519

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133