|
无穷区间反常积分的积分变换计算方法
|
Abstract:
本文基于两个积分变换的定义及其性质,给出无穷区间反常积分的积分变换计算方法,包括Fourier变换计算方法和Laplace变换计算方法。通过经典例题的求解表明相对于常规计算方法,积分变换法可大大简化计算反常积分。
Based on the definition and properties of two integral transformations, this paper gives the integral transformations method for the calculation of improper integral in infinite interval, including Fou-rier transformation and Laplace transformation. The classical examples show that the calculation of improper integrals by integral transformation can greatly simplify the calculation, compared with the typical method.
[1] | 华东师范大学数学系. 数学分析(第四版, 下册) [M]. 北京: 高等教育出版社, 2010. |
[2] | 李志军. 无穷区间广义积分的几种计算方法[J]. 内江科技, 2010, 31(9): 81-81. |
[3] | 黄绪明. 用Laplace变换求反常积分的新方法[J]. 高等函授学报(自然科学版), 2005, 18(1): 34-35. |
[4] | 余海洋, 陈国东, 邓晓宇. 用Laplace变换求一类无穷限积分[J]. 成都理工大学学报: 自然科学版, 2006, 33(2): 218-220. |
[5] | Agathiyan, A., Gowrisankar, A., Fataf, N.A.A., et al. (2023) Remarks on the Integral Transform of Non-Linear Fractal Interpolation Functions. Chaos, Solitons & Fractals, 173, 113749. https://doi.org/10.1016/j.chaos.2023.113749 |
[6] | 何桂添, 唐国吉. 复变函数与积分变换[M]. 上海: 上海交通大学出版社, 2023. |
[7] | Wolf, K.B. (2013) Integral Transforms in Science and Engineering. Springer Science & Business Media, Berlin/Heidelberg. |