全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多模型融合的二手帆船价格评估模型
Second-Hand Sailing Price Evaluation Model Based on Multi-Model Fusion

DOI: 10.12677/AAM.2023.129392, PP. 4006-4012

Keywords: 随机森林,XGBoost,GBDT,LightGBM,Stacking模型融合
Random Forest
, XGBoost, GBDT, LightGBM, Stacking Model Fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文搜集了不同类型帆船的制造商、年份、长度、横梁尺寸、吃水深度、排水量、满载水线、船帆面积、平均货物吞吐量、出售区域,单双体的数据,同时搜集了帆船出售地的人均GDP、平均气温、平均降水量的数据。检查并剔除了数据集中的异常值,对于二手帆船挂牌价格做对数变换的处理,使其更符合正态的分布。基于随机森林、XGBoost、GBDT、LightGBM模型,模型优化阶段以网格搜索算法进行超参数优化,构建了四种可以对二手帆船对数价格进行估计的模型,其中随机森林的估计精度达到96.61%,其余三种模型的估计精度也可达到95%以上。在此基础上本文以Stacking模型融合对四种单体模型进行综合融合,最终得到拟合度更高的融合模型,其对数价格估计的均方误差接近于0.01,此融合模型具有较高的准确性。利用该模型,可以对二手帆船进行合理的定价。
This paper collects the data of manufacturers of different types, year, length, beam size, draft depth, displacement, full load waterline, sail area, average cargo throughput, sale area, and single pair of sailing land, and collects the data of per capita GDP, average temperature and average precipitation of sailing land. Check and eliminate the outliers in the data set, and log-transform the listing price of the second-hand sailboat to make it more in line with the normal distribution. Based on the random forest, XGBoost, GBDT and LightGBM models, the model optimization stage uses the grid search al-gorithm to build four models that can estimate the log price of second-hand sailboats. Among them, the estimation accuracy of random forest reaches 96.61%, and the estimation accuracy of the other three models can also reach more than 95%. On this basis, this paper comprehensively integrates the four monomer models with Stacking model fusion, and finally obtains the fusion model with higher fit. The mean square error of the log price estimation is close to 0.01. This fusion model has high accuracy. Using this model, second-hand sailboats can be reasonably priced.

References

[1]  Zhang, J.H. and Zhang, Z.S. (2023) Modeling and Solving Used Sailboat Market Strategy and Pricing Method. Highlights in Business, Economics and Management, 16, 612-620.
https://doi.org/10.54097/hbem.v16i.10674
[2]  Yang, C.Y., Tang, S.N. and Chen, J.H. (2023) An Estimation of the Pricing of Second-Hand Sailboats Based on the Random Forest Algorithm. Proceedings of the 2nd International Conference on Mathematical Statistics and Economic Analysis, MSEA 2023, Nanjing, 26-28 May 2023, 9 p.
https://doi.org/10.4108/eai.26-5-2023.2334481
[3]  Gao, X., Zhu, J. and Yang, R. (2023) Price Analysis of Used Sailboats Based on LightGBM Model. Highlights in Science, Engineering and Technology, 53, 168-176.
https://doi.org/10.54097/hset.v53i.9709
[4]  Wang, M., Lu, B. and Wang, H. (2023) Exploring the Market: Used Sail-boat Price Estimates Based on Artificial Bee Colony-BP Neural Network. Highlights in Business, Economics and Manage-ment, 16, 72-79.
https://doi.org/10.54097/hbem.v16i.10539
[5]  宋玉华, 王子晓, 李焕群, 王珺. 一种基于随机森林模型的消防监督检查频率预测方法[J]. 中国人民警察大学学报, 2023, 39(2): 51-56.
[6]  李威, 刘检生, 施增强, 郭万里. 基于XGBoost算法的堆石料南水模型参数反演及应用[J]. 水利水运工程学报, 2023(3): 111-120.
[7]  皮理想, 崔桂梅. 进化算法优化GBDT的带钢卷取温度预测[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 122-127.
[8]  柯于锭, 陈可. 基于LightGBM的心血管疾病预测模型研究[J]. 信息与电脑(理论版), 2022, 34(13): 71-73+78.
[9]  孙昭, 李云, 江毓武, 等. 基于Stacking机器学习模型的南海北部海温预报[J]. 海洋预报, 2023, 40(1): 39-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133