全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动脉瘤性蛛网膜下腔出血中生物标志物相关研究
Correlation Study of Biomarkers in Aneurysmal Subarachnoid Hemorrhage

DOI: 10.12677/ACM.2023.1392032, PP. 14536-14542

Keywords: 动脉瘤性蛛网膜下腔出血,生物标志物,病情评估
Aneurysmal Subarachnoid Hemorrhage
, Biomarker, Disease Assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

动脉瘤性蛛网膜下腔出血在全世界范围均有较高的致死率和致残率,作为常见的收治重症监护室的病因,重症监护室的监测仪器能有效帮助医师发现患者病情变化,并及时做出干预措施,但以往的监测手段不能帮助改善患者的最终结局,我们需要发现新的监测手段来帮助临床干预病情改善结局。在这方面,生物标志物的探索是必要的,它有助于了解患者病情变化的生理机制,从而更有效地去改善重症患者结局,减轻家庭及社会的负担。
Aneurysmal subarachnoid hemorrhage has a high mortality and disability rate all over the world. As a common cause of admission to intensive care units, monitoring instruments in intensive care units can effectively help doctors find changes in patients’ conditions and make timely interven-tions. However, previous monitoring methods cannot improve the final outcome of patients. We need to find new monitoring methods to help clinical intervention to improve the outcome. In this regard, it is necessary to explore biomarkers, which will help to understand the physiological mechanism of patients’ condition changes, so as to improve the outcome of severe patients more ef-fectively and reduce the burden on families and society.

References

[1]  Rouanet, C. and Silva, G.S. (2019) Aneurysmal Subarachnoid Hemorrhage: Current Concepts and Updates. Arquivos de Neuro-Psiquiatria, 77, 806-814.
https://doi.org/10.1590/0004-282x20190112
[2]  Neifert, S.N., Chapman, E.K., Martini, M.L., et al. (2021) Aneurysmal Subarachnoid Hemorrhage: The Last Decade. Translational Stroke Research, 12, 428-446.
https://doi.org/10.1007/s12975-020-00867-0
[3]  English, S.W. (2020) Long-Term Outcome and Eco-nomic Burden of Aneurysmal Subarachnoid Hemorrhage: Are We Only Seeing the Tip of the Iceberg? Neurocritical Care, 33, 37-38.
https://doi.org/10.1007/s12028-020-00943-1
[4]  Ruhatiya, R.S., Adukia, S.A., Manjunath, R.B. and Maheshwarappa, H.M. (2020) Current Status and Recommendations in Multimodal Neuromonitoring. Indian Jour-nal of Critical Care Medicine: Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 24, 353-360.
https://doi.org/10.5005/jp-journals-10071-23431
[5]  Rivera Lara, L. and Püttgen, H.A. (2018) Multi-modality Monitoring in the Neurocritical Care Unit. Continuum, 24, 1776-1788.
https://doi.org/10.1212/CON.0000000000000671
[6]  Makarenko, S., Griesdale, D.E., Gooderham, P. and Sekhon, M.S. (2016) Multimodal Neuromonitoring for Traumatic Brain Injury: A Shift towards Individualized Therapy. Journal of Clinical Neuroscience, 26, 8-13.
https://doi.org/10.1016/j.jocn.2015.05.065
[7]  Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Review. Current Protocols in Pharmacology, 76, 9.23.1-9.23.17.
https://doi.org/10.1002/cpph.19
[8]  Chauin, A. (2021) The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vascu-lar Health and Risk Management, 17, 601-617.
https://doi.org/10.2147/VHRM.S327661
[9]  Kaier, T.E., Alaour, B. and Marber, M. (2021) Cardiac Troponin and Defining Myocardial Infarction. Cardiovascular Research, 117, 2203-2215.
https://doi.org/10.1093/cvr/cvaa331
[10]  Levey, A.S., Coresh, J., Tighiouart, H., Greene, T. and Inker, L.A. (2020) Measured and Estimated Glomerular Filtration Rate: Current Status and Future Directions. Nature Reviews Nephrology, 16, 51-64.
https://doi.org/10.1038/s41581-019-0191-y
[11]  Pinsino, A., Mondellini, G.M., Royzman, E.A., et al. (2020) Cystatin C- versus Creatinine-Based Assessment of Renal Function and Prediction of Early Outcomes among Patients with a Left Ventricular Assist Device. Circulation Heart Failure, 13, e006326.
https://doi.org/10.1161/CIRCHEARTFAILURE.119.006326
[12]  Chou, S.H. and Robertson, C.S. (2014) Moni-toring Biomarkers of Cellular Injury and Death in Acute Brain Injury. Neurocritical Care, 21, 187-214.
https://doi.org/10.1007/s12028-014-0039-z
[13]  Chou, S.H., Macdonald, R.L. and Keller, E. (2019) Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations. Neurocritical Care, 30, 46-59.
https://doi.org/10.1007/s12028-019-00725-4
[14]  Lai, P.M. and Du, R. (2016) Association between S100B Levels and Long-Term Outcome after Aneurysmal Subarachnoid Hemorrhage: Systematic Review and Pooled Analysis. PLOS ONE, 11, e0151853.
https://doi.org/10.1371/journal.pone.0151853
[15]  Wiesmann, M., Missler, U., Hagenstr?m, H. and Gottmann, D. (1997) S-100 Protein Plasma Levels after Aneurysmal Subarachnoid Haemorrhage. Acta Neurochirurgica, 139, 1155-1160.
https://doi.org/10.1007/BF01410976
[16]  Balan?a, B., Ritzenthaler, T., Gobert, F., et al. (2020) Sig-nificance and Diagnostic Accuracy of Early S100B Serum Concentration after Aneurysmal Subarachnoid Hemorrhage. Journal of Clinical Medicine, 9, Article 1746.
https://doi.org/10.3390/jcm9061746
[17]  Kedziora, J., Burzynska, M., Gozdzik, W., et al. (2021) Biomarkers of Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage as Early Predictors at Discharge from an Intensive Care Unit. Neurocritical Care, 34, 856-866.
https://doi.org/10.1007/s12028-020-01110-2
[18]  Amiri, M., Astrand, R. and Romner, B. (2013) Can S100B Pre-dict Cerebral Vasospasms in Patients Suffering from Subarachnoid Hemorrhage? Frontiers in Neurology, 4, Article 65.
https://doi.org/10.3389/fneur.2013.00065
[19]  Moritz, S., Warnat, J., Bele, S., et al. (2010) The Prognostic Value of NSE and S100B from Serum and Cerebrospinal Fluid in Patients with Spontaneous Subarachnoid Hemorrhage. Journal of Neurosurgical Anesthesiology, 22, 21-31.
https://doi.org/10.1097/ANA.0b013e3181bdf50d
[20]  Tawk, R.G., Grewal, S.S., Heckman, M.G., et al. (2016) The Relationship between Serum Neuron-Specific Enolase Levels and Severity of Bleeding and Functional Outcomes in Patients with Nontraumatic Subarachnoid Hemorrhage. Neurosurgery, 78, 487-491.
https://doi.org/10.1227/NEU.0000000000001140
[21]  Sahu, S., Nag, D.S., Swain, A. and Samaddar, D.P. (2017) Biochemical Changes in the Injured Brain. World Journal of Biological Chemistry, 8, 21-31.
https://doi.org/10.4331/wjbc.v8.i1.21
[22]  Yuan, Y., Chen, J., Zhang, Y., et al. (2022) Exploration of Risk Factors for Poor Prognosis of Non-Traumatic Non-Aneurysmal Subarachnoid Hemorrhage. Biomolecules, 12, 948.
[23]  Zhao, H., Shang, F., Qi, M., et al. (2022) Related Factors and a Threshold of the Maximum Neuron-Specific Enolase Value Affecting the Prognosis of Patients with Aneurysmal Subarachnoid Hemorrhage. Applied Bionics and Biomechanics, 2022, Article ID: 7596426.
https://doi.org/10.1155/2022/7596426
[24]  Kaste, M., Somer, H. and Konttinen, A. (1977) Brain-Type Creatine Kinase Isoenzyme. Occurrence in Serum in Acute Cerebral Disorders. Archives of Neurology, 34, 142-144.
https://doi.org/10.1001/archneur.1977.00500150028004
[25]  Kettunen, P. (1983) Subarachnoid Haemorrhage and Acute Heart Injury. Clinica Chimica Acta, 134, 123-127.
https://doi.org/10.1016/0009-8981(83)90190-0
[26]  Kloss, R., Keller, H.E., Stober, T., et al. (1985) [Creatine Ki-nase BB Activity in the Serum of Patients with Cerebrovascular Diseases]. Der Nervenarzt, 56, 417-422.
[27]  Coplin, W.M., Longstreth Jr, W.T., Lam, A.M., et al. (1999) Cerebrospinal Fluid Creatine Kinase-BB Isoenzyme Activity and Outcome after Subarachnoid Hemorrhage. Archives of Neurology, 56, 1348-1352.
https://doi.org/10.1001/archneur.56.11.1348
[28]  Yang, Z. and Wang, K.K. (2015) Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker. Trends in Neurosciences, 38, 364-374.
https://doi.org/10.1016/j.tins.2015.04.003
[29]  Schiff, L., Hadker, N., Weiser, S. and Rausch, C. (2012) A Litera-ture Review of the Feasibility of Glial Fibrillary Acidic Protein as a Biomarker for Stroke and Traumatic Brain Injury. Molecular Diagnosis & Therapy, 16, 79-92.
https://doi.org/10.1007/BF03256432
[30]  Katsanos, A.H., Makris, K., Stefani, D., et al. (2017) Plasma Glial Fi-brillary Acidic Protein in the Differential Diagnosis of Intracerebral Hemorrhage. Stroke, 48, 2586-2588.
https://doi.org/10.1161/STROKEAHA.117.018409
[31]  Gyldenholm, T., Hvas, C.L., Hvas, A.M. and Hviid, C.V.B. (2022) Serum Glial Fibrillary Acidic Protein (GFAP) Predicts Outcome after Intracerebral and Subarachnoid Hemorrhage. Neurological Sciences, 43, 6011-6019.
https://doi.org/10.1007/s10072-022-06274-7
[32]  Lewis, S.B., Wolper, R.A., Miralia, L., Yang, C. and Shaw, G. (2008) Detection of Phosphorylated NF-H in the Cerebrospinal Fluid and Blood of Aneurysmal Subarachnoid Hemor-rhage Patients. Journal of Cerebral Blood Flow and Metabolism, 28, 1261-1271.
https://doi.org/10.1038/jcbfm.2008.12
[33]  K?vesdi, E., Lückl, J., Bukovics, P., et al. (2010) Update on Protein Biomarkers in Traumatic Brain Injury with Emphasis on Clinical Use in Adults and Pediatrics. Acta Neurochirurgica, 152, 1-17.
https://doi.org/10.1007/s00701-009-0463-6
[34]  Helbok, R., Schiefecker, A., Delazer, M., et al. (2015) Cerebral Tau Is Elevated after Aneurysmal Subarachnoid Haemorrhage and Associated with Brain Metabolic Distress and Poor Functional and Cognitive Long-Term Outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 79-86.
https://doi.org/10.1136/jnnp-2013-307326
[35]  Joswig, H., Korte, W., Früh, S., et al. (2018) Neurodegenerative Cerebrospinal Fluid Biomarkers Tau and Amyloid β Predict Functional, Quality of Life, and Neuropsychological Out-comes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgical Review, 41, 605-614.
https://doi.org/10.1007/s10143-017-0900-6
[36]  Provencio, J.J. (2013) Inflammation in Subarachnoid Hemorrhage and Delayed Deterioration Associated with Vasospasm: A Review. In: Zuccarello, M., Clark, J., Pyne-Geithman, G., Andaluz, N., Hartings, J. and Adeoye, O., Eds., Cerebral Vasospasm: Neurovascular Events after Subarachnoid Hem-orrhage, Springer, Vienna, 233-238.
https://doi.org/10.1007/978-3-7091-1192-5_42
[37]  Al-Mufti, F., Misiolek, K.A., Roh, D., et al. (2019) White Blood Cell Count Improves Prediction of Delayed Cerebral Ischemia following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 84, 397-403.
https://doi.org/10.1093/neuros/nyy045
[38]  Geraghty, J.R., Lung, T.J., Hirsch, Y., et al. (2021) Systemic Im-mune-Inflammation Index Predicts Delayed Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Neuro-surgery, 89, 1071-1079.
https://doi.org/10.1093/neuros/nyab354
[39]  Gusdon, A.M., Savarraj, J.P.J., Shihabeddin, E., et al. (2021) Time Course of Peripheral Leukocytosis and Clinical Outcomes after Aneurysmal Subarachnoid Hemorrhage. Frontiers in Neurology, 12, Article 694996.
https://doi.org/10.3389/fneur.2021.694996
[40]  Ma, X., Lan, F. and Zhang, Y. (2021) Associations between C-Reactive Protein and White Blood Cell Count, Occurrence of Delayed Cerebral Ischemia and Poor Outcome following Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Acta Neurologica Belgica, 121, 1311-1324.
https://doi.org/10.1007/s13760-020-01496-y
[41]  Lv, S.Y., Wu, Q., Liu, J.P., et al. (2018) Levels of Interleukin-1β, Interleukin-18, and Tumor Necrosis Factor-α in Cerebrospinal Fluid of Aneurysmal Subarachnoid Hemorrhage Patients May Be Predictors of Early Brain Injury and Clinical Prognosis. World Neurosurgery, 111, e362-e373.
https://doi.org/10.1016/j.wneu.2017.12.076
[42]  Zeiler, F.A., Thelin, E.P., Czosnyka, M., et al. (2017) Cerebro-spinal Fluid and Microdialysis Cytokines in Aneurysmal Subarachnoid Hemorrhage: A Scoping Systematic Review. Frontiers in Neurology, 8, Article 379.
https://doi.org/10.3389/fneur.2017.00379
[43]  Simon, M. and Grote, A. (2021) Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. International Journal of Molecular Sciences, 22, Article 4133.
https://doi.org/10.3390/ijms22084133
[44]  Chou, S.H., Lo, E.H. and Ning, M. (2014) Plasma-Type Gelsolin in Subarachnoid Hemorrhage: Novel Biomarker Today, Therapeutic Target Tomorrow? Critical Care, 18, Article No. 101.
https://doi.org/10.1186/cc13178
[45]  Kumar, M., Cao, W., Mcdaniel, J.K., et al. (2017) Plasma ADAMTS13 Ac-tivity and von Willebrand Factor Antigen and Activity in Patients with Subarachnoid Haemorrhage. Thrombosis and Haemostasis, 117, 691-699.
https://doi.org/10.1160/TH16-11-0834
[46]  Boluijt, J., Meijers, J.C.M., Rinkel, G.J.E. and Di Vergouwen, M. (2015) Hemostasis and Fibrinolysis in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage: A Sys-tematic Review. Journal of Cerebral Blood Flow and Metabolism, 35, 724-733.
https://doi.org/10.1038/jcbfm.2015.13
[47]  Wan, H., Wang, Y., Ai, J., et al. (2018) Role of von Willebrand Factor and ADAMTS-13 in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Thrombosis and Haemostasis, 16, 1413-1422.
https://doi.org/10.1111/jth.14136
[48]  Bergstr?m, A., Staals?, J.M., Romner, B. and Olsen, N.V. (2014) Impaired Endothelial Function after Aneurysmal Subarachnoid Haemorrhage Correlates with Arginine: Asymmetric Dimethylarg-inine Ratio. British Journal of Anaesthesia, 112, 311-318.
https://doi.org/10.1093/bja/aet331
[49]  Appel, D., Seeberger, M., Schwedhelm, E., et al. (2018) Asymmetric and Symmetric Dimethylarginines Are Markers of Delayed Cerebral Ischemia and Neurological Outcome in Patients with Subarachnoid Hemorrhage. Neurocritical Care, 29, 84-93.
https://doi.org/10.1007/s12028-018-0520-1
[50]  Koch, M., Acharjee, A., Ament, Z., et al. (2021) Machine Learn-ing-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights into Poor Outcomes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 88, 1003-1011.
https://doi.org/10.1093/neuros/nyaa557

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133