|
Applied Physics 2023
薄长片压电振子的强场机械品质因数表征研究
|
Abstract:
为探究利用温升和振动测量表征强电场下薄长片压电振子的机械品质因数Qm的可行性,首先对工作在横向长度伸缩振动模式的薄长片压电振子的热传导方程进行建模和有限差分求解分析,推导了压电振子自发热参数hg、边界振动速度幅值Vmax与Qm之间的关系;其次利用有限元仿真和数值求解方法,研究了不同材料参数下薄长片压电振子的振动温升分布的特性,验证了利用温升和振动测量方法表征薄长片压电振子Qm值的准确性;最后搭建了实验装置表征了PZT-4和PZT-8两种压电薄长片压电振子在不同电场下的Qm值,结果表明:不同电场强度下PZT-8压电振子的Qm值均高于PZT-4压电振子,且随着电场强度增大两种压电振子的Qm值均减小,该方法和实验结果可为大功率压电器件的设计和性能表征提供参考。
In order to investigate the feasibility of using temperature rise and vibration measurements to characterize the high-field mechanical quality factor Qm of a thin rectangular piezoelectric resonators, a finite difference solution method of the heat conduction equation of a thin rectangular piezoelectric resonators operating in the transverse length extensional vibration mode is firstly presented, and the relationship between the self-heating parameter hg, the edge vibration velocity amplitude Vmax and the mechanical quality factor Qm of the piezoelectric oscillator is derived. Secondly, the vibration and the temperature-rise distribution of the thin rectangular plate piezoelectric oscillator under different material parameters are studied by using finite element simulation and numerical solution, and the accuracy of using temperature rise and vibration measurement methods to characterize the Qm value of the piezoelectric resonators is verified. Finally, an experimental test system is built to characterize the Qm value of PZT-4 and PZT-8 piezoelectric materials under different electric fields. The results show that the Qm values of the PZT-8 piezoelectric resonator are higher than those of the PZT-4 piezoelectric resonator under different electric fields, and the Qm values of both piezoelectric resonators decrease sharply with the increase of electric field amplitude, which can provide a reference for the design and performance characterization of high-power piezoelectric devices.
[1] | Laroche, N., Bourguignon, S., Carcreff, E., Idier, J. and Duclos, A. (2020) An Inverse Approach for Ultrasonic Imaging from Full Matrix Capture Data: Application to Resolution Enhancement in NDT. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 67, 1877-1887. https://doi.org/10.1109/TUFFC.2020.2990430 |
[2] | 曹秒艳, 田少杰, 胡晗, 等. 铝-镁异种合金板材超声焊接工艺[J]. 中国有色金属学报, 2020, 30(12): 2789-2797. |
[3] | 林青, 李玲玲, 王威, 等. 超声雾化辅助微波法合成氧化锌纳米颗粒及其光催化性能[J]. 硅酸盐学报, 2021, 49(3): 544-550. |
[4] | 徐浩桐, 王三舟, 黄伯超, 等. 基于谐振升压的小型超声波电机驱动器[J]. 现代防御技术, 2021, 49(4): 28-34. |
[5] | Lamminen, M.O., et al. (2006) Cleaning of Particle-Fouled Membranes during Cross-Flow Filtration Using an Embedded Ultrasonic Transducer System. Journal of Membrane Science, 283, 225-232.
https://doi.org/10.1016/j.memsci.2006.06.034 |
[6] | 高晓蕾, 刘世清, 樊叶萍, 等. 横向穿孔对压电换能器振动特性的影响[J]. 浙江师范大学学报(自然科学版), 2022, 45(1): 15-20. |
[7] | 刘世清, 麻磊磊. 径向振动压电超声换能器的发展及应用[J]. 陕西师范大学学报(自然科学版), 2020, 48(3): 60-66. |
[8] | Kulkarni, H., Zohaib, K., Khusru, A. and Aiyappa, K.S. (2018) Application of Piezoelectric Technology in Automotive Systems. Materials Today: Proceedings, 5, 21299-21304. https://doi.org/10.1016/j.matpr.2018.06.532 |
[9] | Sarker, M.R., Julai, S., Sabri, M.F.M., Said, S.M., Islam, M.M. and Tahir, M. (2019) Review of Piezoelectric Energy Harvesting System and Application of Optimization Techniques to Enhance the Performance of the Harvesting System. Sensors and Ac-tuators: A Physical, 300, Article ID: 111634. https://doi.org/10.1016/j.sna.2019.111634 |
[10] | Yao, Y., Pan, Y. and Liu, S. (2020) Power Ultrasound and Its Applications: A State-of-the-Art Review. Ultrasonics Sonochemistry, 62, Article ID: 104722. https://doi.org/10.1016/j.ultsonch.2019.104722 |
[11] | Benjeddou, A. (2018) Field-Dependent Nonlinear Piezoelectricity: A Focused Review. International Journal of Smart and Nano Materials, 9, 68-84. https://doi.org/10.1080/19475411.2018.1439850 |
[12] | Liu, Y.Y., Ozaki, R. and Morita, T. (2015) Investigation of Nonlinearity in Piezoelectric Transducers. Sensors and Actuators A: Physical, 227, 31-38. https://doi.org/10.1016/j.sna.2015.03.036 |
[13] | Guyomar, D., Ducharne, B. and Sebald, G. (2011) High Non-linearities in Langevin Transducer: A Comprehensive Model. Ultrasonics, 51, 1006-1013. https://doi.org/10.1016/j.ultras.2011.05.017 |
[14] | Hall, D.A. (2001) Review Nonlinearity in Piezoelectric Ce-ramics. Journal of Materials Science, 36, 4575-4601.
https://doi.org/10.1023/A:1017959111402 |
[15] | Guyomar, D., Aurelle, N. and Eyraud, L. (1997) Piezoelectric Ceramics Nonlinear Behavior. Application to Langevin Transducer. Journal de Physique III, 7, 1197-1208. https://doi.org/10.1051/jp3:1997183 |
[16] | Zhang, S., Li, Y., Li, S., Wu, Y. and Zeng, J. (2022) Investigation of the Nonlinear Phenomena of a Langevin Ultrasonic Transducer Caused by High Applied Voltage. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 236, 873-85. https://doi.org/10.1177/09544062211009343 |
[17] | 张沛霖, 张仲渊. 压电测量[M]. 北京: 国防工业出版社, 1983: 160-164. |
[18] | Uchino, K., Zheng, J., Chen, Y., et al. (2006) Loss Mechanisms and High Power Piezoelectrics. Journal of Materials Science, 41, 217-228. https://doi.org/10.1007/s10853-005-7201-0 |
[19] | Liu, G., Zhang, S., Jiang, W., et al. (2015) Losses in Ferroelectric Materials. Materials Science and Engineering, 89, 1-48. https://doi.org/10.1016/j.mser.2015.01.002 |
[20] | Hirose, S., Yamayoshi, Y., Taga, M., et al. (1991) A Method of Measuring the Vibration Level Dependence of Impedance-Type Equivalent Circuit Constants. Japanese Journal of Applied Physics, 30, 117.
https://doi.org/10.7567/JJAPS.30S1.117 |
[21] | Lee, H.J., Ural, S.O., Chen, L., et al. (2012) High Power Char-acteristics of Lead-Free Piezoelectric Ceramics. Journal of the American Ceramic Society, 95, 3383-3386. https://doi.org/10.1111/j.1551-2916.2012.05462.x |
[22] | Shekhani, H., Scholehwar, T., Hennig, E., et al. (2017) Characterization of Piezoelectric Ceramics Using the Burst/Transient Method with Resonance and Antiresonance Analysis. Journal of the American Ceramic Society, 100, 998-1010. https://doi.org/10.1111/jace.14580 |
[23] | Someno, S., Nagata, H. and Takenaka, T. (2014) High-Temperature and High-Power Piezoelectric Characteristics of (Bi0.5Na0.5)TiO3-Based Lead-Free Piezoelectric Ceramics. Journal of the Ceramic Society of Japan, 122, 406-409.
https://doi.org/10.2109/jcersj2.122.406 |
[24] | Shekhani, H.N. and Uchino, K. (2014) Characterization of Me-chanical Loss in Piezoelectric Materials Using Temperature and Vibration Measurements. Journal of the American Ceramic Society, 97, 2810-2814.
https://doi.org/10.1111/jace.12998 |
[25] | 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009: 112-115. |
[26] | Stewart, M. and Cain, M.G. (2014) Measurement and Modelling of Self-Heating in Piezoe-lectric Materials and Devices. In: Cain, M.G., Ed., Characterization of Ferroelectric Bulk Materials and Thin Films, Springer, Dordrecht, 147-189. https://doi.org/10.1007/978-1-4020-9311-1_7 |
[27] | Nellis, G. and Klein, S. (2008) Heat Transfer. Cambridge University Press, Cambridge, 308-309.
https://doi.org/10.1017/CBO9780511841606 |
[28] | Shi, H.R., Chen, Z.J., Chen, X., et al. (2021) Self-Heating Phenomenon of Piezoelectric Elements Excited by a Tone-Burst Electric Field. Ultrasonics, 117, Article ID: 106562. https://doi.org/10.1016/j.ultras.2021.106562 |