全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高维混合效应模型的统计推断:一种新的方法
Statistical Inference of High-Dimensional Mixed Effects Models: A New Approach

DOI: 10.12677/AAM.2023.129390, PP. 3991-3998

Keywords: 聚类数据,弹性网,纵向数据,随机效应,方差分量
Clustered Data
, Elastic Net, Longitudinal Data, Random Effects, Variance Components

Full-Text   Cite this paper   Add to My Lib

Abstract:

线性混合效应模型广泛应用于分析聚类或重复测量数据。本文提出了一种拟似然结合弹性网的方法来估计高维线性混合模型中的未知参数,包括固定效应及随机效应的方差分量部分。在此基础上,也提出了相关的统计推断。所提出的方法适用于一般设置,其中随机效应的维度和簇可能很大。关于固定效应,我们提供的方法不依赖于方差分量的结构信息,即对方差分量中所涉及到的复杂未知参数使用代理矩阵进行简化。并且对所提出的方法在各种模拟设置中分别进行了固定效应的误差,假设检验的性能以及方差分量的估计误差的评估,均表现出较优的结果。
The linear mixed-effects model is widely used for analyzing clustered or repeated measurements data. This paper proposes a pseudo-likelihood method combined with the elastic net to estimate unknown parameters in high-dimensional linear mixed models, including the variance components of both fixed and random effects. Furthermore, relevant statistical inferences are also presented. The proposed method is applicable to general settings where the dimension and clusters of random effects can be substantial. Regarding fixed effects, our approach does not rely on structural infor-mation about the variance components. Instead, it simplifies the complex unknown parameters in-volved in the variance components using surrogate matrices. The performance of the proposed method is evaluated for fixed effects errors, hypothesis testing, and variance component estimation errors in various simulation settings, all of which demonstrate superior results.

References

[1]  Pinheiro, J. and Bates, D. (2006) Mixed-Effects Models in S and S-PLUS. Springer Science & Business Media, Ber-lin.
[2]  Goldstein, H. (2011) Multilevel Statistical Models. John Wiley & Sons, New York.
https://doi.org/10.1002/9780470973394
[3]  Gumedze, F.N. and Dunne, T.T. (2011) Parameter Estimation and In-ference in the Linear Mixed Model. Linear Algebra and Its Applications, 435, 1920-1944.
https://doi.org/10.1016/j.laa.2011.04.015
[4]  Sun, Y., Zhang, W.Y. and Tong, H. (2007) Estimation of the Covar-iance Matrix of Random Effects in Longitudinal Studies. Annals of Statistics, 35, 2795-2814.
https://doi.org/10.1214/009053607000000523
[5]  Müller, S., Scealy, J.L. and Welsh, A.H. (2013) Model Selec-tion in Linear Mixed Models. Statistical Science, 28, 135-167.
https://doi.org/10.1214/12-STS410
[6]  Ahn, M., Zhang, H.H. and Lu, W. (2012) Moment-Based Method for Random Effects Selection in Linear Mixed Models. Statisti-ca Sinica, 22, 1539-1562.
https://doi.org/10.5705/ss.2011.054
[7]  Stram, D.O. and Lee, J.W. (1994) Vari-ance Components Testing in the Longitudinal Mixed Effects Model. Biometrics, 50, 1171-1177.
https://doi.org/10.2307/2533455
[8]  Lin, X. (1997) Variance Component Testing in Generalised Linear Models with Random Effects. Biometrika, 84, 309-326.
https://doi.org/10.1093/biomet/84.2.309
[9]  Verbeke, G. and Molenberghs, G. (2003) The Use of Score Tests for Inference on Variance Components. Biometrics, 59, 254-262.
https://doi.org/10.1111/1541-0420.00032
[10]  Vonesh, E.F. (2006) Mixed Models: Theory and Applications. Journal of the American Statistical Association, 101, 1724-1726.
https://doi.org/10.1198/jasa.2006.s146
[11]  Fan, Y. and Li, R. (2012) Variable Selection in Linear Mixed Effects Models. Annals of Statistics, 40, 2043-2068.
https://doi.org/10.1214/12-AOS1028
[12]  Bradic, J., Claeskens, G. and Gueuning, T. (2020) Fixed Effects Testing in High-Dimensional Linear Mixed Models. Journal of the American Statistical Association, 115, 1835-1850.
https://doi.org/10.1080/01621459.2019.1660172
[13]  Li, S., Cai, T.T. and Li, H. (2022) Inference for High-Dimensional Linear Mixed-Effects Models: A Quasi-Likelihood Approach. Journal of the American Statistical Association, 117, 1835-1846.
https://doi.org/10.1080/01621459.2021.1888740
[14]  Laird, N.M. and Ware, J.H. (1982) Random-Effects Models for Longitudinal Data. Biometrics, 38, 963-974.
https://doi.org/10.2307/2529876
[15]  Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67, 301-320.
https://doi.org/10.1111/j.1467-9868.2005.00503.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133