全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于误差修正的多模型融合空气质量预测
Multi Model Fusion Air Quality Prediction Based on Error Correction

DOI: 10.12677/AAM.2023.129388, PP. 3968-3980

Keywords: 空气质量预测,变分模态分解,自注意力机制,双向门控循环网络,误差修正
Air Quality Prediction
, VMD, Self-Attention, BiGRU, Error Correction

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于空气质量指数序列的复杂性和非线性,创造性提出将误差修正与多模型融合相结合的预测方法。首先,利用变分模态分解(VMD)将原始不平稳的空气质量指数序列分解为多个不同时间尺度的平稳固有模态分量;其次,使用改进的SA-BiGRU用于空气质量预测,叠加各个子序列得到空气质量指数初始预测值,实现了长距离时间模式的特征提取;最后,在初始预测模型的基础上建立误差修正模型,通过SVR预测模型得到训练集的预测误差,与初步预测结果用加法器合并,增强模型的表达能力。与单一模型BP、LSTM以及混合模型VMD-LSTM、VMD-GRU、VMD-BiGRU、VMD-SA-BiGRU模型对比,其预测的平均绝对误差分别降低了32.037%、24.581%、18.134%、11.448%、9.320%、5.802%。实验结果表明,VMD-SA-BiGRU-SVR模型在对空气质量指数进行预测时具有更高的精度,预测性能更优异。
Due to the complexity and nonlinearity of the air quality index, a creative prediction method com-bining error correction with multi model fusion is proposed. Firstly, variational mode decomposi-tion (VMD) is used to decompose the original unstable air quality index sequence into multiple sta-tionary natural mode components at different time scales. Secondly, the improved SA-BiGRU was used for air quality prediction, and the initial predicted values of the air quality index were ob-tained by overlaying various sub-sequences, achieving feature extraction for long-distance time patterns. Finally, an error correction model is established on the basis of the initial prediction mod-el, and the prediction error of the training set is obtained through the SVR prediction model. The initial prediction results are combined with an adder to enhance the model’s expression ability. Compared with the single model BP, LSTM and the mixed model VMD-LSTM, VMD-GRU, VMD-BiGRU and VMD-SA-BiGRU, the average absolute error of its prediction decreased by 32.037%, 24.581%, 18.134%, 11.448%, 9.320% and 5.802% respectively. The experimental results show that the VMD-SA-BiGRU-SVR model has higher accuracy and better prediction performance in predicting air quality index.

References

[1]  宋国君, 李虹霖. 基于PM_(2.5)的空气污染防治政策框架设计[J]. 中国人口?资源与环境, 2023, 33(2): 1-10.
[2]  王建书, 王瑛, 赵敏娴, 等. ARIMA模型在苏州市空气质量指数预测中的应用[J]. 公共卫生与预防医学, 2019, 30(2): 18-20.
[3]  朱润苏. 基于机器学习的空气质量预测算法研究[D]: [硕士学位论文]. 无锡: 江南大学, 2021.
[4]  付恩, 张益农, 杨帆, 等. 基于频率分解Transformer的时间序列长时预测模型[J]. 制造业自动化, 2022, 44(11): 177-181.
[5]  Wang, S.Y., Yu, L. and Lai, L.K. (2005) Crude Oil Price Forecasting with TEI@I Meth-odology. Journal of Systems Science and Complexity, 18, 145-166.
[6]  史学良, 李梁, 赵清华. 基于改进LSTM网络的空气质量指数预测[J]. 统计与决策, 2021, 37(16): 57-60.
[7]  梁涛, 谢高锋, 米大斌, 等. 基于CEEMDAN-SE和LSTM神经网络的PM10浓度预测[J]. 环境工程, 2020, 38(2): 107-113.
[8]  Dragomiretskiy, K. and Zosso, D. (2013) Variational Mode Decomposition. IEEE Transactions on Signal Processing, 62, 531-544.
https://doi.org/10.1109/TSP.2013.2288675
[9]  柯虎, 张新生, 陈章政. 基于二次分解BAS-LSTM的陕西省碳排放预测研究[J]. 经营与管理, 2023, 5: 1-14.
[10]  Hao, L., Ling, H.Z., Cheng, T., et al. (2023) Short-Term Load Forecasting Model Based on Gated Recurrent Unit and Multi-Head Attention. The Journal of China Universities of Posts and Telecommunications, 5, 1-7.
[11]  Liu, X. and Guo, H.Y. (2022) Air Quality Indicators and AQI Prediction Cou-pling Long-Short Term Memory (LSTM) and Sparrow Search Algorithm (SSA): A Case Study of Shanghai. Atmos-pheric Pollution Research, 13, Article ID: 101551.
https://doi.org/10.1016/j.apr.2022.101551
[12]  Duan, J.K., Chang, M.H., Chen, X.Y., et al. (2022) A Combined Short-Term Wind Speed Forecasting Model Based on CNN-RNN and Linear Regression Optimization Considering Error. Renewable Energy, 200, 788-808.
https://doi.org/10.1016/j.renene.2022.09.114
[13]  Wang, D. and Mao, K. (2018) Multimodal Object Classification Using Bidirectional Gated Recurrent Unit Networks. 2018 IEEE 3rd International Conference on Data Science in Cy-berspace (DSC), Guangzhou, 18-21 June 2018, 685-690.
https://doi.org/10.1109/DSC.2018.00109
[14]  Lin, Z., Feng, M., Santos, C.N., et al. (2017) A Structured Self-Attentive Sentence Embedding.
[15]  Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. In: Proceedings of the 31st International Conference on Neural In-formation Processing Systems, Curran Associates Inc., Long Beach, 6000-6010.
[16]  Ustunu, B., Melssen, W.J. and Buydens, L.M.C. (2007) Visualisation and Interpretation of Support Vector Regression Models. Analytica Chimica Acta, 595, 299-309.
https://doi.org/10.1016/j.aca.2007.03.023
[17]  Lee, H., Kim, D. and Gu, J.H. (2023) Prediction of Food Factory Energy Consumption Using MLP and SVR Algorithms. Energies, 16, Article No. 1550.
https://doi.org/10.3390/en16031550

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133