全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

去肾交感神经术治疗高血压的研究进展
Research Progress of Renal Sympathetic De-nervation for Treatment of Hypertension

DOI: 10.12677/ACM.2023.1392014, PP. 14396-14403

Keywords: 去肾交感神经术,高血压
Renal Sympathetic Denervation
, Hypertension

Full-Text   Cite this paper   Add to My Lib

Abstract:

去肾交感神经术是近十几年来出现的一种新的基于器械的降压治疗方式。但SYMPLICITY HTN-3试验表明去肾交感神经术并不能显著降低患者的血压,使得这项技术的有效性遭受质疑。近期一些新的研究结果似乎更支持这项技术应用于高血压患者的降压治疗。本文就该项技术治疗高血压的临床疗效及面临的问题作一综述。
Renal sympathetic denervation is a new antihypertensive therapy based devices in recent years. However, the Symplicity HTN-3 research shows that renal sympathetic denervation could not sig-nificantly reduce the blood pressure, which calls into question the effectiveness of this technique. Recently, some new research results seem to support the application of this technique in the anti-hypertensive treatment of patients with hypertension. This article reviews the clinical efficacy and problems of this technique in the treatment of hypertension.

References

[1]  (2018) Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupation-al, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1923-1994.
[2]  Mills, K.T., Bundy, J.D., Kelly, T.N., et al. (2016) Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies from 90 Countries. Circulation, 134, 441-450.
https://doi.org/10.1161/CIRCULATIONAHA.115.018912
[3]  Lauder, L., Azizi, M., Kirtane, A.J., et al. (2020) Device-Based Therapies for Arterial Hypertension. Nature Reviews Cardiology, 17, 614-628.
https://doi.org/10.1038/s41569-020-0364-1
[4]  王捷. 2021年欧洲高血压学会关于经导管去肾交感神经术立场文件的解读: 经导管去肾交感神经术真的要来了! [J]. 中国介入心脏病学杂志, 2021, 29(10): 554-557.
[5]  Osborn, J.W., Tyshynsky, R. and Vulchanova, L. (2021) Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annual Review of Physiology, 83, 429-450.
https://doi.org/10.1146/annurev-physiol-031620-091656
[6]  胡鑫渝, 周浩, 李丹, 等. 聚焦去肾交感神经术发展的关键——患者选择与精准消融[J]. 中国介入心脏病学杂志, 2023, 31(3): 213-218.
[7]  Tanaka, S. and Okusa, M.D. (2020) Crosstalk between the Nervous System and the Kidney. Kidney International, 97, 466-476.
https://doi.org/10.1016/j.kint.2019.10.032
[8]  Hering, D., Marusic, P., Walton, A.S., et al. (2014) Sustained Sympathetic and Blood Pressure Reduction 1 Year after Renal Denervation in Patients with Resistant Hypertension. Hy-pertension, 64, 118-124.
https://doi.org/10.1161/HYPERTENSIONAHA.113.03098
[9]  Hering, D., Lambert, E.A., Marusic, P., et al. (2013) Substantial Reduction in Single Sympathetic Nerve Firing after Renal Denervation in Patients with Resistant Hy-pertension. Hypertension, 61, 457-464.
https://doi.org/10.1161/HYPERTENSIONAHA.111.00194
[10]  Krum, H., Schlaich, M., Whitbourn, R., et al. (2009) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Multicentre Safety and Proof-of-Principle Cohort Study. The Lancet, 373, 1275-1281.
https://doi.org/10.1016/S0140-6736(09)60566-3
[11]  Krum, H., Schlaich, M.P., Sobotka, P.A., et al. (2014) Per-cutaneous Renal Denervation in Patients with Treatment- Resistant Hypertension: Final 3-Year Report of the Symplicity HTN-1 Study. The Lancet, 383, 622-629.
https://doi.org/10.1016/S0140-6736(13)62192-3
[12]  Esler, M.D., Krum, H., Sobotka, P.A., et al. (2010) Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Random-ised Controlled Trial. The Lancet, 376, 1903-1909.
https://doi.org/10.1016/S0140-6736(10)62039-9
[13]  Bhatt, D.L., Kandzari, D.E., O’neill, W.W., et al. (2014) A Controlled Trial of Renal Denervation for Resistant Hypertension. The New England Journal of Medicine, 370, 1393-1401.
https://doi.org/10.1056/NEJMoa1402670
[14]  Persu, A., Jin, Y., Baelen, M., et al. (2014) Eligibility for Renal Denervation: Experience at 11 European Expert Centers. Hypertension, 63, 1319-1325.
https://doi.org/10.1161/HYPERTENSIONAHA.114.03194
[15]  Kandzari, D.E., Bhatt, D.L., Brar, S., et al. (2015) Predictors of Blood Pressure Response in the Symplicity HTN-3 Trial. European Heart Journal, 36, 219-227.
https://doi.org/10.1093/eurheartj/ehu441
[16]  Mahfoud, F., Tunev, S., Ewen, S., et al. (2015) Impact of Lesion Placement on Efficacy and Safety of Catheter-Based Radiofrequency Renal Denervation. Journal of the American College of Cardiology, 66, 1766-1775.
https://doi.org/10.1016/j.jacc.2015.08.018
[17]  Azizi, M., Sapoval, M., Gosse, P., et al. (2015) Optimum and Stepped Care Standardised Antihypertensive Treatment with or without Renal Denervation for Resistant Hypertension (DENERHTN): A Multicentre, Open-Label, Randomised Controlled Trial. The Lancet, 385, 1957-1965.
https://doi.org/10.1016/S0140-6736(14)61942-5
[18]  Mahfoud, F., B?hm, M., Azizi, M., et al. (2015) Proceedings from the European Clinical Consensus Conference for Renal Denervation: Considerations on Future Clinical Trial Design. European Heart Journal, 36, 2219-2227.
https://doi.org/10.1093/eurheartj/ehv192
[19]  Kandzari, D.E., Kario, K., Mahfoud, F., et al. (2016) The SPYRAL HTN Global Clinical Trial Program: Rationale and Design for Studies of Renal Denervation in the Absence (SPYRAL HTN OFF-MED) and Presence (SPYRAL HTN ON-MED) of Antihypertensive Medications. American Heart Journal, 171, 82-91.
https://doi.org/10.1016/j.ahj.2015.08.021
[20]  Mahfoud, F., Schmieder, R.E., Azizi, M., et al. (2017) Proceedings from the 2nd European Clinical Consensus Conference for Device-Based Therapies for Hypertension: State of the Art and Considerations for the Future. European Heart Journal, 38, 3272-3281.
https://doi.org/10.1093/eurheartj/ehx215
[21]  Townsend, R.R., Mahfoud, F., Kandzari, D.E., et al. (2017) Cathe-ter-Based Renal Denervation in Patients with Uncontrolled Hypertension in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED): A Randomised, Sham-Controlled, Proof-of-Concept Trial. The Lancet, 390, 2160-2170.
https://doi.org/10.1016/S0140-6736(17)32281-X
[22]  Kandzari, D.E., B?hm, M., Mahfoud, F., et al. (2018) Effect of Renal Denervation on Blood Pressure in the Presence of Antihypertensive Drugs: 6-Month Efficacy and Safety Re-sults from the SPYRAL HTN-ON MED Proof-of-Concept Randomised Trial. The Lancet, 391, 2346-2355.
https://doi.org/10.1016/S0140-6736(18)30951-6
[23]  B?hm, M., Townsend, R.R., Kario, K., et al. (2020) Ra-tionale and Design of Two Randomized Sham-Controlled Trials of Catheter-Based Renal Denervation in Subjects with Uncontrolled Hypertension in the Absence (SPYRAL HTN-OFF MED Pivotal) and Presence (SPYRAL HTN-ON MED Expansion) of Antihypertensive Medications: A Novel Approach Using Bayesian Design. Clinical Research in Cardiology, 109, 289-302.
https://doi.org/10.1007/s00392-020-01595-z
[24]  B?hm, M., Kario, K., Kandzari, D.E., et al. (2020) Efficacy of Catheter-Based Renal Denervation in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED Pivotal): A Multicentre, Randomised, Sham-Controlled Trial. The Lancet, 395, 1444-1451.
https://doi.org/10.1016/S0140-6736(20)30554-7
[25]  Mahfoud, F., Kandzari, D.E., Kario, K., et al. (2022) Long-Term Efficacy and Safety of Renal Denervation in the Presence of Antihypertensive Drugs (SPYRAL HTN-ON MED): A Randomised, Sham-Controlled Trial. The Lancet, 399, 1401-1410.
https://doi.org/10.1016/S0140-6736(22)00455-X
[26]  Mauri, L., Kario, K., Basile, J., et al. (2018) A Multinational Clinical Approach to Assessing the Effectiveness of Catheter-Based Ultrasound Renal Denervation: The RADIANCE-HTN and REQUIRE Clinical Study Designs. American Heart Journal, 195, 115-129.
https://doi.org/10.1016/j.ahj.2017.09.006
[27]  Azizi, M., Schmieder, R.E., Mahfoud, F., et al. (2018) Endovascular Ultrasound Renal Denervation to Treat Hypertension (RADIANCE-HTN SOLO): A Multicentre, International, Sin-gle-Blind, Randomised, Sham-Controlled Trial. The Lancet, 391, 2335-2345.
https://doi.org/10.1016/S0140-6736(18)31082-1
[28]  Azizi, M., Schmieder, R.E., Mahfoud, F., et al. (2019) Six-Month Results of Treatment-Blinded Medication Titration for Hypertension Control after Randomization to Endo-vascular Ultrasound Renal Denervation or a Sham Procedure in the RADIANCE-HTN SOLO Trial. Circulation, 139, 2542-2553.
https://doi.org/10.1161/CIRCULATIONAHA.119.040451
[29]  Azizi, M., Daemen, J., Lobo, M.D., et al. (2020) 12-Month Results from the Unblinded Phase of the RADIANCE- HTN SOLO Trial of Ultrasound Renal Denervation. JACC: Cardiovascular Interventions, 13, 2922-2933.
https://doi.org/10.1016/j.jcin.2020.09.054
[30]  Azizi, M., Sanghvi, K., Saxena, M., et al. (2021) Ultrasound Renal Denervation for Hypertension Resistant to a Triple Medication Pill (RADIANCE-HTN TRIO): A Randomised, Multi-centre, Single-Blind, Sham-Controlled Trial. The Lancet, 397, 2476-2486.
https://doi.org/10.1016/S0140-6736(21)00788-1
[31]  Kario, K., Yokoi, Y., Okamura, K., et al. (2022) Cathe-ter-Based Ultrasound Renal Denervation in Patients with Resistant Hypertension: The Randomized, Controlled REQUIRE Trial. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 45, 221-231.
https://doi.org/10.1038/s41440-021-00754-7
[32]  Mahfoud, F., B?hm, M., Schmieder, R., et al. (2019) Effects of Renal Denervation on Kidney Function and Long-Term Outcomes: 3-Year Follow-Up from the Global SYMPLICITY Registry. European Heart Journal, 40, 3474-3482.
https://doi.org/10.1093/eurheartj/ehz118
[33]  Townsend, R.R., Walton, A., Hettrick, D.A., et al. (2020) Review and Meta-Analysis of Renal Artery Damage Following Percutaneous Renal Denervation with Radiofrequency Renal Artery Ablation. EuroIntervention, 16, 89-96.
https://doi.org/10.4244/EIJ-D-19-00902
[34]  Kordalis, A., Tsiachris, D., Pietri, P., et al. (2018) Regression of Or-gan Damage Following Renal Denervation in Resistant Hypertension: A Meta-Analysis. Journal of Hypertension, 36, 1614-1621.
https://doi.org/10.1097/HJH.0000000000001798
[35]  Thomopoulos, C., Parati, G. and Zanchetti, A. (2014) Ef-fects of Blood Pressure Lowering on Outcome Incidence in Hypertension. 1. Overview, Meta-Analyses, and Me-ta-Regression Analyses of Randomized Trials. Journal of Hypertension, 32, 2285-2295.
https://doi.org/10.1097/HJH.0000000000000378
[36]  Ettehad, D., Emdin, C.A., Kiran, A., et al. (2016) Blood Pressure Lowering for Prevention of Cardiovascular Disease and Death: A Systematic Review and Meta-Analysis. The Lancet, 387, 957-967.
https://doi.org/10.1016/S0140-6736(15)01225-8
[37]  (2021) Pharmacological Blood Pressure Lowering for Pri-mary and Secondary Prevention of Cardiovascular Disease across Different Levels of Blood Pressure: An Individual Participant-Level Data Meta-Analysis. The Lancet, 397, 1625-1636.
[38]  Townsend, R.R. and Sobotka, P.A. (2018) Catheter-Based Renal Denervation for Hypertension. Current Hypertension Reports, 20, Article No. 93.
https://doi.org/10.1007/s11906-018-0896-5
[39]  Messerli, F.H., Bangalore, S. and Schmieder, R.E. (2015) Wil-der’s Principle: Pre-Treatment Value Determines Post-Treatment Response. European Heart Journal, 36, 576-579.
https://doi.org/10.1093/eurheartj/ehu467
[40]  Mahfoud, F., Mancia, G., Schmieder, R., et al. (2020) Renal Dener-vation in High-Risk Patients with Hypertension. Journal of the American College of Cardiology, 75, 2879-2888.
https://doi.org/10.1016/j.jacc.2020.04.036
[41]  Mahfoud, F., Bakris, G., Bhatt, D.L., et al. (2017) Reduced Blood Pressure-Lowering Effect of Catheter-Based Renal Denervation in Patients with Isolated Systolic Hypertension: Data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. European Heart Journal, 38, 93-100.
https://doi.org/10.1093/eurheartj/ehw325
[42]  Fengler, K., Rommel, K.-P., Lapusca, R., et al. (2019) Renal Dener-vation in Isolated Systolic Hypertension Using Different Catheter Techniques and Technologies. Hypertension, 74, 341-348.
https://doi.org/10.1161/HYPERTENSIONAHA.119.13019
[43]  Van Amsterdam, W.A.C., Blankestijn, P.J., Goldschmeding, R., et al. (2016) The Morphological Substrate for Renal Denervation: Nerve Distribution Patterns and Parasympathetic Nerves. A Post-Mortem Histological Study. Annals of Anatomy, 204, 71-79.
https://doi.org/10.1016/j.aanat.2015.11.004
[44]  Mompeo, B., Maranillo, E., Garcia-Touchard, A., et al. (2016) The Gross Anatomy of the Renal Sympathetic Nerves Revisited. Clinical Anatomy, 29, 660-664.
https://doi.org/10.1002/ca.22720
[45]  Kiuchi, M.G., Esler, M.D., Fink, G.D., et al. (2019) Renal Denervation Up-date from the International Sympathetic Nervous System Summit: JACC State-of-the-Art Review. Journal of the Ameri-can College of Cardiology, 73, 3006-3017.
https://doi.org/10.1016/j.jacc.2019.04.015
[46]  Liu, H., Chen, W., Lai, Y., et al. (2019) Selective Renal Denervation Guided by Renal Nerve Stimulation in Canine. Hypertension, 74, 536-545.
https://doi.org/10.1161/HYPERTENSIONAHA.119.12680
[47]  Chinushi, M., Izumi, D., Iijima, K., et al. (2013) Blood Pressure and Autonomic Responses to Electrical Stimulation of the Renal Arterial Nerves before and after Ablation of the Renal Artery. Hypertension, 61, 450-456.
https://doi.org/10.1161/HYPERTENSIONAHA.111.00095
[48]  De Jong, M.R., Adiyaman, A., Gal, P., et al. (2016) Renal Nerve Stimulation-Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response after Renal Denervation. Hypertension, 68, 707-714.
https://doi.org/10.1161/HYPERTENSIONAHA.116.07492
[49]  Wang, J., Sun, N., Ge, J., et al. (2023) Rationale and Design of Sympathetic Mapping/Ablation of Renal Nerves Trial (SMART) for the Treatment of Hypertension: A Prospective, Multicenter, Single-Blind, Randomized and Sham Procedure-Controlled Study. Journal of Cardiovascular Translational Research, 16, 358-370.
https://doi.org/10.1007/s12265-022-10307-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133