全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review on the Study of Continental Drift and Numerical Simulation Associated with the Early Earth Core-Magma Angular Momentum Exchange

DOI: 10.4236/ojg.2023.139042, PP. 980-1006

Keywords: Continental Drift, Driving Force, Directionality, Numerical Model, Angular Momentum Exchange

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model.

References

[1]  Rupke, N.A. (1970) Continental Drift before 1900. Nature, 227, 349-350.
https://doi.org/10.1038/227349a0
[2]  Romano, M. and Cifelli, R.L. (2015) 100 Years of Continental Drift. Science, 350, 915-916.
https://doi.org/10.1126/science.aad6230
[3]  Wegener, A. (1912) Die Entstehung der Kontinente. Geologische Rundschau, 3, 276-292.
https://doi.org/10.1007/BF02202896
[4]  Wegener, A. (1915) Die Entstehung der Kontinente und Ozeane. Vieweg, Braunschweig, 94 p.
[5]  Wegener, A. (1929) Die Entstehung der Kontinente und Ozeane. 4th Edition, Vieweg, Braunschweig, 231 p.
[6]  Frisch, W., Meschede, M. and Blakey, R.C. (2011) Plate Tectonics: Continental Drift and Mountain Building. Springer, Berlin, 212 p.
https://doi.org/10.1007/978-3-540-76504-2
[7]  Vine, F.J. (1977) The Continental Drift Debate. Nature, 266, 19-22.
https://doi.org/10.1038/266019a0
[8]  Frankel, H.R. (2012) The Continental Drift Controversy. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139095938
[9]  Vine, F.J. and Matthews, D.H. (1963) Magnetic Anomalies over Oceanic Ridges. Nature, 199, 947-949.
https://doi.org/10.1038/199947a0
[10]  Vine, F.J. (1966) Spreading of the Ocean Floor: New Evidence. Magnetic Anomalies May Record Histories of the Ocean Basins and Earth’s Magnetic Field for 2×108 Years. Science, 154, 1405-1415.
https://doi.org/10.1126/science.154.3755.1405
[11]  Vanandel, T.H. and Moore, T.C. (1970) Magnetic Anomalies and Seafloor Spreading Rates in the Northern South Atlantic. Nature, 226, 328-330.
https://doi.org/10.1038/226328a0
[12]  Hess, H.H. (1962) History of Ocean Basins. In: Engel, A.E.J., James, H.L. and Leonard, B.F., Eds., Petrologic Studies: A Volume to Honor A. F. Buddington, Geological Society of America, Boulder, 599-620.
https://doi.org/10.1130/Petrologic.1962.599
[13]  Dietz, R.S. (1961) Continent and Ocean Basin Evolution by Spreading of the Sea Floor. Nature, 190, 854-857.
https://doi.org/10.1038/190854a0
[14]  Tan, Y.J., Maya, T., Waldhauser, F. and William, S.D.W. (2016) Dynamics of a Seafloor-Spreading Episode at the East Pacific Rise. Nature, 540, 261-265.
https://doi.org/10.1038/nature20116
[15]  Forsyth, D. and Uyeda, S. (1975) On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43, 163-200.
https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
[16]  Houseman, G.A., McKenzie, D.P. and Molnar, P. (1981) Convective Instability of a Thickened Boundary Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research-Solid Earth, 86, 6115-6132.
https://doi.org/10.1029/JB086iB07p06115
[17]  Steinberger, B. and Calderwood, A.R. (2006) Models of Large-Scale Viscous Flow in the Earth’s Mantle with Constraints from Mineral Physics and Surface Observations. Geophysical Journal International, 167, 1461-1481.
https://doi.org/10.1111/j.1365-246X.2006.03131.x
[18]  Gillian, R.F. (2010) Plates vs Plumes: A Geological Controversy. Wiley-Blackwell, Hoboken, 364 p.
[19]  Qian, W.H. (2023) A Tidal Theory Based on the Inertial Motion of the Matter in the Universe. Journal of Modern Physics, 14, 1252-1271.
https://doi.org/10.4236/jmp.2023.148071
[20]  Denis, C., Rybicki, K.R., Schreider, A.A., Tomecka-Suchoń, S. and Varga, P. (2011) Length of the Day and Evolution of the Earth’s Core in the Geological Past. Astronomische Nachrichten, 332, 24-35.
https://doi.org/10.1002/asna.200811473
[21]  Yang, Y. and Song, X.D. (2023) Multidecadal Variation of the Earth’s Inner-Core Rotation. Nature Geoscience, 16, 182-187.
https://doi.org/10.1038/s41561-022-01112-z
[22]  Dalrymple, G.B. (2001) The Age of the Earth in the Twentieth Century: A Problem (Mostly) Solved. Geological Society of London, 190, 205-221.
https://doi.org/10.1144/GSL.SP.2001.190.01.14
[23]  Walter, M.J. and Tronnes, R.G. (2004) Early Earth Differentiation. Earth and Planetary Science Letters, 225, 253-269.
https://doi.org/10.1016/j.epsl.2004.07.008
[24]  Qian, W.H. and Du, J. (2023) A Study on the Plate Tectonics in the Early Earth Period Based on the Core-Magma Angular Momentum Exchange. Open Journal of Geology, 13, 598-621.
https://doi.org/10.1016/j.epsl.2004.07.008
[25]  Wilson, J.T. (1966) Did the Atlantic Close and Then Re-Open? Nature, 211, 676-681.
https://doi.org/10.1038/211676a0
[26]  Wilson, J.T. (1968) Static or Mobile Earth: The Current Scientific Revolution. Proceedings of the American Philosophical Society, 112, 309-320.
[27]  Qian, W.H. and Leung, J. and Zhang, B.L. (2023) An Orthogonal Collision Dynamic Mechanism of Wave-Like Uplift Plateaus in Southern Asia. Open Journal of Geology, 13, 828-846.
https://doi.org/10.4236/ojg.2023.138037
[28]  Qian, W.H. (2000) A Dynamical Model for Continental Drift and Experimental Simulated Results. Journal of Geomechanics, 6, 15-21. (In Chinese)
[29]  Qian, W.H. (1992) Distribution of Continents and Islands over the Southern Hemisphere and the Long-Term Deceleration in Speed of the Earth’s Rotation. Scientia Geologica Sinica, 27, 305-308. (In Chinese)
[30]  Qian, W.H. (2017) Temporal Climatology and Anomalous Weather Analysis. Springer, Singapore.
https://doi.org/10.1007/978-981-10-3641-5
[31]  Qian, W.H. (2020) The Real World: Structure and Anomaly in Universal System. Jiangsu Phoenix Science and Technology Press, Nanjing, 368 p. (In Chinese)
[32]  Qian, W.H. (1994) Dynamical Introduction of the Planetary Earth. Meteorological Press, Beijing, 213 p. (In Chinese)
[33]  Qian, W.H. (1996) The Motion of the Earth Interior Liquid and Global Tectonics. Earth Science Frontiers, No. 3, 152-160. (In Chinese)
[34]  Ball, P., Eagles, G., Ebinger, C., McClay, K. and Totterdell, J. (2013) The Spatial and Temporal Evolution of Strain during the Separation of Australia and Antarctica. Geochemistry, Geophysics, Geosystems, 14, 2771-2799.
https://doi.org/10.1002/ggge.20160
[35]  Nguyen, L.C., Hall, S.A., Bird, D.E. and Ball, P.J. (2016) Reconstruction of the East Africa and Antarctica Continental Margins. Journal of Geophysical Research: Solid Earth, 121, 4156-4179.
https://doi.org/10.1002/2015JB012776
[36]  van den Ende, C., White, L.T. and van Welzen, P.C. (2017) The Existence and Break-up of the Antarctic Land Bridge as Indicated by Both Amphi-Pacific Distributions and Tectonics. Gondwana Research, 44, 219-227.
https://doi.org/10.1016/j.gr.2016.12.006
[37]  Glen, R.A .and Meffre, S. (2009) Styles of Cenozoic Collisions in the Western and Southwestern Pacific and Their Applications to Palaeozoic Collisions in the Tasmanides of Eastern Australia. Tectonophyics, 479, 130-149.
https://doi.org/10.1016/j.tecto.2009.03.023
[38]  Zeng, Q.C. (1996) Natural Cybernetics. Bulletin of Chinese Academy of Sciences, 3, 305-308. (In Chinese)
[39]  Kubota, T., Saito, T. and Nishida, K. (2022) Global Fast-Traveling Tsunamis Driven by Atmospheric Lamb Waves on the 2022 Tonga Eruption. Science, 377, 91-94.
https://doi.org/10.1126/science.abo4364
[40]  Lynett, P., McCann, M., Zhou, Z.L., et al. (2022) Diverse Tsunamigenesis Triggered by the Hunga Tonga-Hunga Ha’apai Eruption. Nature, 609, 728-733.
https://doi.org/10.1038/s41586-022-05170-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133