The aim of this study is to characterize the subsoil
in the southern region of the North-Kivu
province (DR Congo). Gravity and geomagnetic data were used in this
study. Five different filters—the horizontal gradient magnitude, the
analytic signal, the tilt derivative, the horizontal derivative of tilt derivative and the tilt angle of horizontal gradient—enabled
us to delineate the gravity and magnetic anomaly sources present in the shallow subsurface of the
study area. The plains of the Rutshuru territory are dominated by sources of
weak gravity anomalies and sources of very weak magnetic anomalies located
almost in the same places. The southern part of Rutshuru territory and a large part of Masisi territory are underlain by
shallow sources of high gravity and
magnetic anomalies. Gravity and magnetic anomaly sources are almost identical
in the study area. The shallow sources of gravity and magnetic anomalies
encountered in our study area are more or less linear and connected. The numerous gravity and magnetic
lineaments present in our study region have three major directions: oriented East-West,
North-South and North-East-South-West.
References
[1]
Arisoy, M., & Dikmen, ü. (2013). Edge Detection of Magnetic Sources Using Enhanced Total Horizontal Derivative of the Tilt Angle. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 34, 73-82.
[2]
Askari, A. (2014). Edge Detection of Gravity Anomaly Sources via the Tilt Angle, Total Horizontal Derivative, Total Horizontal Derivative of the Tilt Angle and New Normalized Total Horizontal Derivative. Scholars Journal of Engineering and Technology, 2, 842-846.
[3]
Blakely, R. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511549816
[4]
Cordell, L., & Grauch, V. (1985). Mapping Basement Magnetization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico. In The Utility of Regional Gravity and Magnetic Anomaly Maps (pp. 181-197). Society of Exploration Geophysicists. https://doi.org/10.1190/1.0931830346.ch16
[5]
Eldosouky, A. M., Pham, L. T., Abdelrahman, K., Fnais, M. S., & Gomez-Ortiz, D. (2022). Mapping Structural Features of the Wadi Umm Dulfah Area Using Aeromagnetic Data. Journal of King Saud University—Science 34, Article ID: 101803. https://doi.org/10.1016/j.jksus.2021.101803
[6]
Eldosouky, A., Thanh Pham, L., Mohmed, H., & Pradhan, B. (2020). A Comparative Study of THG, AS, TA, Theta, TDX and LTHG Techniques for Improving Source Boundaries Detection of Magnetic Data Using Synthetic Models: A Case Study from G. Um Monqul, North Eastern Desert, Egypt. Journal of African Earth Sciences, 170, Article ID: 103940. https://doi.org/10.1016/j.jafrearsci.2020.103940
[7]
Ferreira, F. J. F., de Souza, J., Bongiolo, A. de B. e S., & de Castro, L. G. (2013). Enhancement of the Total Horizontal Gradient of Magnetic Anomalies Using the Tilt Angle. Geophysics, 78, J33-J41. https://doi.org/10.1190/geo2011-0441.1
[8]
Gaudard, C., Dupre, M., Jorand, J., Mamdy, B., & Ciarabeli, L. (2013). Pétrole à Muanda: La justice au rabais. CCFD-Terre Solidaire.
[9]
Hinze, J., Von Frese, R., & Saad, H. (2015). Applications of Gravity and Magnetic Methods to Subsurface Exploration. Cambridge University Press.
[10]
Launay, N. (2018). Propriétés d’aimantation des sources géologiques des anomalies du champ magnétique terrestre: Magnétisme des roches et modélisation numérique (pp. 1-228). Ph.D. Thesis, Aix-Marseille Université.
[11]
Miller, H., & Singh, V. (1994). Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32, 213-217. https://doi.org/10.1016/0926-9851(94)90022-1
[12]
Ministère Provincial du Plan (2017). Localisation des Objectifs de développement durable dans le Nord-Kivu. https://knowledge-uclga.org/IMG/pdf/localisationdesodddanslenordkivu.pdf
[13]
Pham, L. T. (2020). A Comparative Study on Different Filters for Enhancing Potential Field Source Boundaries: Synthetic Examples and a Case Study from the Song Hong Trough (Vietnam). Arabian Journal of Geosciences, 13, Article No. 723. https://doi.org/10.1007/s12517-020-05737-5
[14]
Pham, L. T. (2021). A High Resolution Edge Detector for Interpreting Potential Field Data: A Case Study from the Witwatersrand Basin, South Africa. Journal of African Earth Sciences, 178, Article ID: 104190. https://doi.org/10.1016/j.jafrearsci.2021.104190
[15]
Pham, L. T., Vu, M. D., & Le, S. T. (2021). Performance Evaluation of Amplitude- and Phase-Based Methods for Estimating Edges of Potential Field Sources. Iranian Journal of Science and Technology, Transaction A: Science, 45, 1327-1339. https://doi.org/10.1007/s40995-021-01122-3
[16]
Prasad, K., Pham, L., Singh, A., Eldosouky, A., Abdelrahman, K., Fnais, M., & Gómez-Ortiz, D. (2022). A Novel Enhanced Total Gradient (ETG) for Interpretation of Magnetic Data. Minerals, 12, Article 1468. https://doi.org/10.3390/min12111468
[17]
Reynolds, J. (2011). An Introduction to Applied and Environnemental Geophysics (2nd ed.). John Wiley & Sons, Ltd.
[18]
Roest, W., Verhoef, J., & Pilkington, M. (1992). Magnetic Interpretation Using 3-D Analytic Signal. Geophysics, 57, 116-125. https://doi.org/10.1190/1.1443174
[19]
Shalaby, H., Bangui, C., Monfort, A., Huart, J., & Bal, J. (2012). Evaluation Environnementale Stratégique de l’exploration/exploitation pétrolière dans le nord du Rift Albertin (Provinces du Nord-Kivu et de l’Orientale). Ministère de l’Environnement, Conservation de la Nature et Tourisme et Ministère délégué chargé des Finances (Ordonnateur national du Fonds Européen de Développement, FED), République Démocratique du Congo.
[20]
Turnbull, R., Allibone, A., Matheys, F., Fanning, C., Kasereka, E., Kabete, J. et al. (2021). Geology and Geochronology of the Archean Plutonic Rocks in the Northeast Democratic Republic of Congo. Precambrien Research, 358, Article ID: 106133. https://doi.org/10.1016/j.precamres.2021.106133
[21]
Verduzco, B., Fairhead, J., Green, C., & Mackenzie, C. (2004). New Insights into Magnetic Derivatives for Structural Mapping. The Leading Edge, 23, 116-119. https://doi.org/10.1190/1.1651454