全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Some Implications of the Gessel Identity

DOI: 10.4236/am.2023.149034, PP. 545-579

Keywords: Convolutions Involving Bernoulli Numbers, Truncated Convolutions Involving Bernoulli Numbers, Congruences, Binomial and Multinomial Convolutions of Divided Bernoulli Numbers, Multiple Harmonic Sums, Generalized Harmonic Numbers, Miki Identity, Gessel Identity, Sums of Powers of Integers Weighted by Powers of the Fermat Quotients, Generalization of Kummer’s Congruences, Generalizations of Friedmann-Tamarkine, Lehmer, Ernvall-Metsänkyla’s Congruences, p-Adic Numbers, Weighted Sums of Powers of Integers

Full-Text   Cite this paper   Add to My Lib

Abstract:

We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.

References

[1]  Dunne, G.V. and Schubert, C. (2004) Bernoulli Number Identities from Quantum Field Theory. IHES Preprint P/04/31.
[2]  Glaisher, J.W.L. (1900) On the Residues of the Sums of Products of the First p-1 Numbers and Their Powers, to Modulus p2 or p3. The Quarterly Journal of Mathematics, 31, 321-353.
[3]  Levaillant, C. (2020) Congruences Related to Miki’s Identity.
[4]  Levaillant, C. (2022) Multiple Harmonic Sums Modulo p4 and Applications. Journal of Combinatorics and Number Theory, 12, 79-114.
[5]  Sun, Z.-H. (2000) Congruences Concerning Bernoulli Numbers and Bernoulli Polynomials. Discrete Applied Mathematics, 105, 193-223.
https://doi.org/10.1016/S0166-218X(00)00184-0
[6]  Miki, H. (1978) A Relation between Bernoulli Numbers. Journal of Number Theory, 10, 297-302.
https://doi.org/10.1016/0022-314X(78)90026-4
[7]  Ernvall, R. and Metsänkylä, T. (1991) Cyclotomic Invariants for Primes between 125000 and 150000. Mathematics of Computation, 56, 851-858.
https://doi.org/10.2307/2008413
[8]  Friedmann, A. and Tamarkine, J. (1909) Quelques formules concernant la théorie de la fonction [x] et des nombres de Bernoulli. Journal für die reine und angewandte Mathematik, 135, 146-156.
https://doi.org/10.1515/crll.1909.135.146
[9]  Lehmer, E. (1938) On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson. Annals of Mathematics, 39, 350-360.
https://doi.org/10.2307/1968791
[10]  Faulhaber, J. (1631) Academia algebrae, darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und prolifiert warden.
[11]  Jacobi, C.G.J. (1834) De usu legitimo formulae summatoriae Maclaurinianae. Journal für die reine und angewandte Mathematik, 12, 263-272.
https://doi.org/10.1515/crll.1834.12.263
[12]  Knuth, D.E. (1993) Johann Faulhaber and Sums of Powers. Mathematics of Computation, 61, 277-294.
https://doi.org/10.1090/S0025-5718-1993-1197512-7
[13]  Voronoi, G.F. (1890) On Bernoulli Numbers. Communications of the Kharkiv Mathematical Society, 2, 129-148. (In Russian)
[14]  Kummer, E.E. (1850) Allgemeiner Beweis des Fermatschen Satzes, daß die Gleichung Xλ + Yλ = Zλ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten λ, welche ungerade Primzahlen sind und in den Zählern der ersten (λ-3)/2 Bernoullischen Zahlen als Faktoren nicht vorkommen. Journal für die reine und angewandte Mathematik, 40, 131-138.
https://doi.org/10.1515/crll.1850.40.130
[15]  Levaillant, C. (2019) Wilson’s Theorem Modulo p2 Derived from Faulhaber Polynomials.
[16]  Gouvea, F. (1993) p-Adic Numbers, an Introduction. 2nd Edition, Springer, Berlin.
https://doi.org/10.1007/978-3-662-22278-2_1
[17]  Levaillant, C. (2020) Powers of Two Weighted Sum of the First p Divided Bernoulli Numbers Modulo p.
[18]  Gessel, I.M. (2005) On Miki’s Identity for Bernoulli Numbers. Journal of Number Theory, 110, 75-82.
https://doi.org/10.1016/j.jnt.2003.08.010
[19]  Johnson, W. (1975) p-Adic Proofs of Congruences for the Bernoulli Numbers. Journal of Number Theory, 7, 251-265.
https://doi.org/10.1016/0022-314X(75)90020-7
[20]  Clausen, T. (1840) Theorem. Astronomische Nachrichten, 17, 351-352.
https://doi.org/10.1002/asna.18400172204
[21]  Von Staudt, C. (1840) Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend. Journal für die reine und angewandte Mathematik, 21, 372-374.
https://doi.org/10.1515/crll.1840.21.372
[22]  Agoh, T. (1995) On Giuga’s Conjecture. Manuscripta Mathematica, 87, 501-510.
https://doi.org/10.1007/BF02570490
[23]  Giuga, G. (1950) Su una presumibile proprieta caratterista dei numeri primi. Istituto Lombardo Accademia di Scienze e Lettere. Rendiconti. Classe di Scienze Matematiche e Naturali. Serie A, 83, 511-528.
[24]  Wolstenholme, J. (1862) On Certain Properties of Prime Numbers. The Quarterly Journal of Pure and Applied Mathematics, 5, 35-39.
[25]  Buhler, J., Crandall, R., Ernvall, R. and Metsänkyla, T. (1993) Irregular Primes and Cyclotomic Invariants to Four Million. Mathematics of Computation, 61, 151-153.
https://doi.org/10.1090/S0025-5718-1993-1197511-5
[26]  Selfridge, J.L. and Pollack, B.W. (1964) Fermat’s Last Theorem Is True for Any Exponent up to 25,000. Notices of the AMS, 11, 97.
[27]  Wagstaff, S.S. (1978) The Irregular Primes to 125000. Mathematics of Computation, 32, 583-591.
https://doi.org/10.1090/S0025-5718-1978-0491465-4
[28]  Johnson, W. (1974) Irregular Prime Divisors of the Bernoulli Numbers. Mathematics of Computation, 28, 653-657.
https://doi.org/10.1090/S0025-5718-1974-0347727-0
[29]  Ireland, K. and Rosen, M. (1982) A Classical Introduction to Modern Number Theory. Springer, New York, 239-248.
https://doi.org/10.1007/978-1-4757-1779-2
[30]  Shiratani, K. and Yokoyama, S. (1982) An Application of p-Adic Convolutions. Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics, 36, 73-83.
https://doi.org/10.2206/kyushumfs.36.73
[31]  Faber, C. and Pandharipande, R. (2000) Hodge Integrals and Gromov-Witten Theory. Inventiones Mathematicae, 139, 137-199.
https://doi.org/10.1007/s002229900028
[32]  Artamkin, I.V. (2007) An Elementary Proof of the Miki-Zagier-Gessel Identity. Russian Mathematical Surveys, 62, 1194-1196.
https://doi.org/10.1070/RM2007v062n06ABEH004482
[33]  Crabb, M.C. (2005) The Miki-Gessel Bernoulli Number Identity. Glasgow Mathematical Journal, 47, 327-328.
https://doi.org/10.1017/S0017089505002545
[34]  Sitaramachandrarao, R. and Davis, B. (1986) Some Identities Involving the Riemann Zeta Function II. Indian Journal of Pure and Applied Mathematics, 17, 1175-1186.
[35]  Sankaranaryanan, A. (1987) An Identity Involving Riemann Zeta Function. Indian Journal of Pure and Applied Mathematics, 18, 794-800.
[36]  Zhang, W.P. (1991) On the Several Identities of Riemann Zeta Function. Chinese Science Bulletin, 22, 1852-1856.
[37]  Petojević, A. and Srivastava, H.M. (2009) Computation of Euler’s Type Sums of the Products of Bernoulli Numbers. Applied Mathematics Letters, 22, 796-801.
https://doi.org/10.1016/j.aml.2008.06.040
[38]  Dilcher, K. (1996) Sums of Products of Bernoulli Numbers. Journal of Number Theory, 60, 23-41.
https://doi.org/10.1006/jnth.1996.0110
[39]  Gorsky, A. and Zhiboedov, A. (20106) Aspects of the N = 4 SYM Amplitude—Wilson Polygon Duality. Nuclear Physics B, 835, 343-363.
https://doi.org/10.1016/j.nuclphysb.2010.04.003
[40]  Agoh, T. (2016) On Miki’s Identity for Bernoulli Numbers. Integers, 16, 1-12.
[41]  Zhao, J. (2007) Bernoulli Numbers, Wolstenholme’s Theorem and p5 Variations of Luca’s Theorem. Journal of Number Theory, 123, 18-26.
https://doi.org/10.1016/j.jnt.2006.05.005
[42]  Sun, Z.-H. A Note on Wilson’s Theorem and Wolstenholme’s Theorem.
[43]  Sun, Z.-H. (1997) Congruences for Bernoulli Numbers and Bernoulli Polynomials. Discrete Mathematics, 163, 153-163.
https://doi.org/10.1016/S0012-365X(97)81050-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133