This paper studies the effects of the
solar wind on Jupiter’s magnetosphere. The solar wind parameters are
characterized using the Michigan Solar Wind Model (mSWiM) solar wind data
propagated to Jupiter from 1997 to 2016. This analysis covers almost solar
cycles 23 and 24. Interplanetary fast shocks: Forward shocks (FS), Reverse
shocks (RS), and solar wind dynamic pressure were obtained and analyzed during
the apparent opposition periods. The fast forward (FS) shocks were predominant
during this period. Generally, the solar wind dynamic pressure from FS and RS
shocks follows the solar cycles 23 and 24.
References
[1]
Rodríguez Gómez, J.M. (2021) The Sun’s Influence on Earth and Other Planets: Space Weather. Revista Brasileira de Ensino de Física, 43, e20200495. https://doi.org/10.1590/1806-9126-rbef-2020-0495
[2]
Plainaki, C., Lilensten, J., Radioti, A., Andriopoulou, M., Milillo, A., Nordheim, T., Dandouras, J., Coustenis, A., Grassi, D., Manganoetal, V., et al. (2016) Planetary Space Weather: Scientific Aspects and Future Perspectives. Journal of Space Weather and Space Climate, 6, Article No. A31. https://doi.org/10.1051/swsc/2016024
[3]
Bunce, E.J., Cowley, S.W.H. and Yeoman, T.K. (2004) Jovian Cusp Processes: Implications for the Polar Aurora. Journal of Geophysical Research: Space Physics, 109, Article No. A09S13. https://doi.org/10.1029/2003JA010280
[4]
Cowley, S.W.H., Badman, S.V., Imber, S.M. and Milan, S.E. (2008) Comment on “Jupiter: A Fundamentally Different Magnetospheric Interaction with the Solar Wind” by D.J. McComas and F. Bagenal. Geophysical Research Letters, 35, Article No. L101010. https://doi.org/10.1029/2007GL032645
[5]
McComas, D.J. and Bagenal, F. (2007) Jupiter: A Fundamentally Different Magnetospheric Interaction with the Solar Wind. Geophysical Research Letters, 34, Article No. L20106. https://doi.org/10.1029/2007GL031078
[6]
Vogt, M.F., Gyalay, S., Kronberg, E.A., Bunce, E.J., Kurth, W.S., Zieger, B. and Tao, C. (2019) Solar Wind Interaction with Jupiter’s Magnetosphere: A Statistical Study of Galileo in Situ Data and Modeled Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, 124, 10170-10199. https://doi.org/10.1029/2019JA026950
[7]
Brice, N.M. and Ioannidis, G.A. (1970) The Magnetospheres of Jupiter and Earth. Icarus, 13, 173-183. https://doi.org/10.1016/0019-1035(70)90048-5
[8]
Delamere, P.A. and Bagenal, F. (2010) Solar Wind Interaction with Jupiter’s Magnetosphere. Journal of Geophysical Research, 115, Article No. A10201. https://doi.org/10.1029/2010JA015347
[9]
Badman, S.V., Bonfond, B., Fujimoto, M., Gray, R.L., Kasaba, Y., Kasahara, S., Kimura, T., Melin, H., Nichols, J.D., Steffl, A.J., Tao, C., Tsuchiya, F., Yamazaki, A., Yoneda, M., Yoshikawa, I. and Yoshioka, K. (2016) Weakening of Jupiter’s Main Auroral Emission during January 2014. Geophysical Research Letters, 43, 988-997. https://doi.org/10.1002/2015GL067366
[10]
Dunn, W.R., Branduardi-Raymont, G., Elsner, R.F., Vogt, M.F., Lamy, L., Ford, P.G., Coates, A.J., Gladstone, G.R., Jackman, C.M., Nichols, J.D., Rae, I.J., Varsani, A., Kimura, T., Hansen, K.C. and Jasinski, J.M. (2016) The Impact of an ICME on the Jovian X-Ray Aurora. Journal of Geophysical Research: Space Physics, 121, 2274-2307. https://doi.org/10.1002/2015JA021888
[11]
Panchenko, M., Rucker, H.O. and Farrell, W.M. (2013) Periodic Bursts of Jovian Non-Io Decametric Radio Emission. Planetary and Space Science, 77, 3-11. https://doi.org/10.1016/j.pss.2012.08.015
[12]
Hess, S.L.G., Echer, E. and Zarka, P. (2012) Solar Wind Pressure Effects on Jupiter Decametric Radio Emissions Independent of Io. Planetary and Space Science, 70, 114-125. https://doi.org/10.1016/j.pss.2012.05.011
[13]
Echer, E., Zarka, P., Gonzalez, W.D., Morioka, A. and Denis, L. (2010) Solar Wind Effects on Jupiter Non-Io DAM Emissions during Ulysses Distant Encounter (2003-2004). Astronomy and Astrophysics, 519, Article No. A84. https://doi.org/10.1051/0004-6361/200913305
[14]
Nichols, J.D., Clarke, J.T., Gérard, J.C., Grodent, D. and Hansen, K.C. (2009) Variation of Different Components of Jupiter’s Auroral Emission. Journal of Geophysical Research, 114, Article No. A06210. https://doi.org/10.1029/2009JA014051
[15]
Chané, E., Saur, J., Keppens, R. and Poedts, S. (2017) How Is the Jovian Main Auroral Emission Affected by the Solar Wind? Journal of Geophysical Research: Space Physics, 122, 1960-1978. https://doi.org/10.1002/2016JA023318
[16]
Zarka, P. (1998) Auroral Radio Emissions at the Outer Planets: Observations and Theories. Journal of Geophysical Research, 103, 20159-20194. https://doi.org/10.1029/98JE01323
[17]
Zieger, B. and Hansen, K.C. (2008) Statistical Validation of a Solar Wind Propagation Model from 1 to 10 AU. Journal of Geophysical Research: Space Physics, 113, Article No. A08107. https://doi.org/10.1029/2008JA013046
[18]
Tóth, G. (1996) A General Code for Modeling MHD Flows on Parallel Computers: Versatile Advection Code. Astrophysical Letters and Communications, 34, 245-250.
[19]
Hess, S.L.G., Echer, E., Zarka, P., Lamy, L. and Delamere, P.A. (2014) Multi-Instrument Study of the Jovian Radio Emissions Triggered by Solar Wind Shocks and Inferred Magnetospheric Subcorotation Rates. Planetary and Space Science, 99, 136-148. https://doi.org/10.1016/j.pss.2014.05.015
[20]
Echer, E. (2019) Interplanetary Shock Parameters near Jupiter’s Orbit. Geophysical Research Letters, 46, 5681-5688. https://doi.org/10.1029/2019GL082126
[21]
Rodríguez-Gómez, J.M., Podladchikova, T., Veronig, A., Ruzmaikin, A., Feynman, J. and Petrukovich, A. (2020) Clustering of Fast Coronal Mass Ejections during Solar Cycles 23 and 24 and the Implications for CME-CME Interactions. The Astrophysical Journal, 899, Article No. 47. https://doi.org/10.3847/1538-4357/ab9e72
[22]
Ebert, R., Bagenal, F., McComas, D. and Fowler, C. (2014) A Survey of Solar Wind Conditions at 5 AU: A Tool for Interpreting Solar Wind-Magnetosphere Interactions at Jupiter. Frontiers in Astronomy and Space Sciences, 1, Article 4. https://doi.org/10.3389/fspas.2014.00004