Computational Chemistry and Molecular Modeling Techniques for the Study of Micropeptin EI-964: Insights into Its Chemical Reactivity and Potential Pharmaceutical Properties
Micropeptin EI-964 is a cyclic peptide compound isolated from a marine cyanobacterium with potent inhibitory activity against serine proteases, particularly chymotrypsin and trypsin. It has shown promising activity against various cancer cell lines, making it a candidate for drug development. The unique structure and activity of Micropeptin EI-964 make it a promising lead compound for the development of novel serine protease inhibitors and anti-cancer drugs. Computational Chemistry and Molecular Modeling techniques can provide valuable insights into the chemical reactivity and pharmaceutical properties of Micropeptin EI-964, guiding the design and development of new compounds with enhanced bioactivity and improved drug-like properties.
References
[1]
Ploutno, A., Shoshan, M. and Carmeli, S. (2002) Three Novel Protease Inhibitors from a Natural Bloom of the Cyanobacterium Microcystis aeruginosa. Journal of Natural Products, 65, 973-978. https://doi.org/10.1021/np010597b
[2]
Pelay-Gimeno, M., Tulla-Puche, J. and Albericio, F. (2013) Head-to-Side-Chain Cyclodepsipeptides of Marine Origin. Marine Drugs, 11, 1693-1717.
https://doi.org/10.3390/md11051693
[3]
Pelay-Gimeno, M., Albericio, F. and Tulla-Puche, J. (2016) Synthesis of Complex Head-to-Side-Chain Cyclodepsipeptides. Nature Protocols, 11, 1924-1947.
https://doi.org/10.1038/nprot.2016.116
[4]
Köcher, S., Resch, S., Kessenbrock, T., Schrapp, L., Ehrmann, M. and Kaiser, M. (2020) From Dolastatin 13 to Cyanopeptolins, Micropeptins, and Lyngbyastatins: The Chemical Biology of Ahp-cyclodepsipeptides. Natural Product Reports, 37, 163-174.
https://doi.org/10.1039/C9NP00033J
[5]
Frau, J., Flores-Holgun, N. and Glossman-Mitnik, D. (2018) Chemical Reactivity Properties, pKa Values, AGEs Inhibitor Abilities and Bioactivity Scores of the Mirabamides A-H Peptides of Marine Origin Studied by Means of Conceptual DFT. Marine Drugs, 16, 302-319. https://doi.org/10.3390/md16090302
[6]
Flores-Holgun, N., Frau, J. and Glossman-Mitnik, D. (2019) Chemical-Reactivity Properties, Drug Likeness, and Bioactivity Scores of Seragamides A-F Anticancer Marine Peptides: Conceptual Density Functional Theory Viewpoint. Computation, 7, Article No. 52. https://doi.org/10.3390/computation7030052
[7]
Frau, J., Flores-Holgun, N. and Glossman-Mitnik, D. (2019) Chemical Reactivity Theory and Empirical Bioactivity Scores as Computational Peptidology Alternative Tools for the Study of Two Anticancer Peptides of Marine Origin. Molecules, 24, Article No. 1115. https://doi.org/10.3390/molecules24061115
[8]
Flores-Holgun, N., Frau, J. and Glossman-Mitnik, D. (2019) Computational Prediction of Bioactivity Scores and Chemical Reactivity Properties of the Parasin I Therapeutic Peptide of Marine Origin through the Calculation of Global and Local Conceptual DFT Descriptors. Theoretical Chemistry Accounts, 138, Article No. 78.
https://doi.org/10.1007/s00214-019-2469-3
[9]
Flores-Holgun, N., Frau, J. and Glossman-Mitnik, D. (2020) A Fast and Simple Evaluation of the Chemical Reactivity Properties of the Pristinamycin Family of Antimicrobial Peptides. Chemical Physics Letters, 739, Article ID: 137021.
https://doi.org/10.1016/j.cplett.2019.137021
[10]
Kallen, A. (2019) Computational Pharmacokinetics. CRC Press, London.
[11]
Parr, R. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.
[12]
Chermette, H. (1999) Chemical Reactivity Indexes in Density Functional Theory. Journal of Computational Chemistry, 20, 129-154.
https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
[13]
Geerlings, P., Proft, F.D. and Langenaeker, W. (2003) Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1874.
https://doi.org/10.1021/cr990029p
[14]
Geerlings, P., Chamorro, E., Chattaraj, P.K., Proft, F.D., Gázquez, J.L., Liu, S., Morell, C., Toro-Labbé, A., Vela, A. and Ayers, P. (2020) Conceptual Density Functional Theory: Status, Prospects, Issues. Theoretical Chemistry Accounts, 139, Article No. 36. https://doi.org/10.1007/s00214-020-2546-7
[15]
Toro-Labbé, A. (2007) Theoretical Aspects of Chemical Reactivity. Elsevier Science, Amsterdam.
[16]
Chattaraj, P.K. (2009) Chemical Reactivity Theory—A Density Functional View. CRC Press, Boca Raton. https://doi.org/10.1201/9781420065442
[17]
Chakraborty, D. and Chattaraj, P.K. (2021) Conceptual Density Functional Theory Based Electronic Structure Principles. Chemical Science, 12, 6264-6279.
https://doi.org/10.1039/D0SC07017C
[18]
Halgren, T.A. (1996) Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. Journal of Computational Chemistry, 17, 490-519.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
[19]
Halgren, T.A. (1996) Merck Molecular Force Field. II. MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions. Journal of Computational Chemistry, 17, 520-552.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
[20]
Halgren, T.A. (1999) MMFF VI. MMFF94s Option for Energy Minimization Studies. Journal of Computational Chemistry, 20, 720-729.
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
[21]
Halgren, T.A. and Nachbar, R.B. (1996) Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. Journal of Computational Chemistry, 17, 587-615.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q
[22]
Halgren, T.A. (1996) Merck Molecular Force Field. V. Extension of MMFF94 Using Experimental Data, Additional Computational Data, and Empirical Rules. Journal of Computational Chemistry, 17, 616-641.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<616::AID-JCC5>3.0.CO;2-X
Peverati, R. and Truhlar, D.G. (2012) Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Physical Chemistry Chemical Physics, 14, 16187-16191. https://doi.org/10.1039/c2cp42576a
[25]
Weigend, F. and Ahlrichs, R. (2005) Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Physical Chemistry Chemical Physics, 7, 3297-3305.
https://doi.org/10.1039/b508541a
[26]
Weigend, F. (2006) Accurate Coulomb-Fitting Basis Sets for H to Rn. Physical Chemistry Chemical Physics, 8, 1057-1065. https://doi.org/10.1039/b515623h
[27]
Marenich, A.V., Cramer, C.J. and Truhlar, D.G. (2009) Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B, 113, 6378-6396. https://doi.org/10.1021/jp810292n
[28]
Lu, T. and Chen, F. (2011) Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry, 33, 580-592. https://doi.org/10.1002/jcc.22885
[29]
Lu, T. and Chen, Q. (2022) Ch. 31. Realization of Conceptual Density Functional Theory and Information-Theoretic Approach in Multiwfn Program. In: Liu, S., Ed., Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, Wiley, Weinheim, 631-647. https://doi.org/10.1002/9783527829941.ch31
[30]
Gázquez, J., Cedillo, A. and Vela, A. (2007) Electrodonating and Electroaccepting Powers. Journal of Physical Chemistry A, 111, 1966-1970.
https://doi.org/10.1021/jp065459f
[31]
Chattaraj, P., Chakraborty, A. and Giri, S. (2009) Net Electrophilicity. Journal of Physical Chemistry A, 113, 10068-10074. https://doi.org/10.1021/jp904674x
[32]
Putz, M.V. (2011) Chemical Action Concept and Principle. MATCH Communications in Mathematical and in Computer Chemistry, 66, 35-63.
[33]
Domingo, L.R., Chamorro, E. and Perez, P. (2008) Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. The Journal of Organic Chemistry, 73, 4615-4624. https://doi.org/10.1021/jo800572a
[34]
Jaramillo, P., Domingo, L.R., Chamorro, E. and Pérez, P. (2008) A Further Exploration of a Nucleophilicity Index Based on the Gas-Phase Ionization Potentials. Journal of Molecular Structure: THEOCHEM, 865, 68-72.
https://doi.org/10.1016/j.theochem.2008.06.022
[35]
Domingo, L.R. and Sáez, J.A. (2009) Understanding the Mechanism of Polar Diels-Alder Reactions. Organic and Biomolecular Chemistry, 7, 3576-3583.
https://doi.org/10.1039/b909611f
[36]
Domingo, L.R. and Perez, P. (2011) The Nucleophilicity N Index in Organic Chemistry. Organic and Biomolecular Chemistry, 9, 7168-7175.
https://doi.org/10.1039/c1ob05856h
[37]
Domingo, L.R., Ríos-Gutiérrez, M. and Pérez, P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21, Article No. 748. https://doi.org/10.3390/molecules21060748
[38]
Morell, C., Grand, A. and Toro-Labbé, A. (2004) New Dual Descriptor for Chemical Reactivity. The Journal of Physical Chemistry A, 109, 205-212.
https://doi.org/10.1021/jp046577a
[39]
Morell, C., Grand, A. and Toro-Labbé, A. (2006) Theoretical Support for Using the Δf(r) Descriptor. Chemical Physics Letters, 425, 342-346.
https://doi.org/10.1016/j.cplett.2006.05.003
[40]
Martnez-Araya, J.I. (2012) Explaining Reaction Mechanisms Using the Dual Descriptor: A Complementary Tool to the Molecular Electrostatic Potential. Journal of Molecular Modeling, 19, 2715-2722. https://doi.org/10.1007/s00894-012-1520-2
[41]
Martínez-Araya, J.I. (2015) Why Is the Dual Descriptor a More Accurate Local Reactivity Descriptor than Fukui Functions? Journal of Mathematical Chemistry, 53, 451-465. https://doi.org/10.1007/s10910-014-0437-7
[42]
Chang, Y., Hawkins, B.A., Du, J.J., Groundwater, P.W., Hibbs, D.E. and Lai, F. (2022) A Guide to in Silico Drug Design. Pharmaceutics, 15, Article No. 49.
https://doi.org/10.3390/pharmaceutics15010049
[43]
Santos, G.B., Ganesan, A. and Emery, F.S. (2016) Oral Administration of Peptide-Based Drugs: Beyond Lipinski’s Rule. ChemMedChem, 11, 2245-2251.
https://doi.org/10.1002/cmdc.201600288