All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Isolation of Picocyanobacteria (Order Synechococcales) and Occurrence of Cyanotoxins (Anatoxin-a) in Saline Microhabitats at Martha’s Vineyard, MA

DOI: 10.4236/jwarp.2023.159024, PP. 413-423

Keywords: Picocyanobacteria, Anatoxin-a, 16s Metabarcoding, Phycocyanin, Phycoerythrin

Full-Text   Cite this paper   Add to My Lib


We have used serial filtration to isolate picocyanobacteria from brackish and marine microhabitats for analysis. We used 16s metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genus Cyanobium 6307 (Upper Chilmark Pond) and differing abundances of Cyanobium 6307 and Synechococcus 9902 (Chilmark Pond, Edgartown Great Pond, Tisbury Great Pond and Tashmoo Pond). The proportion and composition of (pico)cyanobacteria in water samples were influenced by the salinity concentrations at various sites, as evidenced by fluorometry and 16s metabarcoding analysis. The cyanobacterial neurotoxin anatoxin-a was present in the picocyanobacterial samples from all studied sites. Additional analyses using fluorometry and 16s metabarcoding described members of the Order Nostocales, including a halotolerant population of Dolichospermum sp., Sphaerospermopsis spp. and Nodularia spp. in Upper Chilmark Pond. We were able to establish a positive linear correlation between cyanobacterial biomass (phycocyanin) and anatoxin-a concentrations using samples taken from Upper Chilmark Pond.


[1]  Cabello-Yeves, P.J., Callieri, C., Picazo, A., Schallenberg, L., Huber, P., Roda-Garcia, J.J., Bartosiewicz, M., Belykh, O.I., Tikhonova, I.V., Requena-Torcells, A., De Prado, P.M., Puxty, R.J., Millard, A.D., Camacho, A., Rodriguez-Valera, F. and Scanlan, D.J. (2022) Elucidating the Picocyanobacteria Salinity Divide through Ecogenomics of New Freshwater Isolates. BMC Biology, 20, Article No. 175.
[2]  Hunter-Cevera, K.R., Post, A.F., Peacock E.E. and Sosik, H.M. (2016) Diversity of Synechococcus at the Martha’s Vineyard Coastal Observatory: Insights from Culture Isolations, Clone Libraries and Flow Cytometry. Microbial Ecology, 71, 276-289.
[3]  Leland, N.J., Haney, J.F., Conte, K., Malkus-Benjamin, K. and Horsley, B. (2019) Evaluation of Size Structure in Freshwater Cyanobacterial Populations: Methods to Quantify Risk Associated with Changes in Biomass and Microcystin Concentrations. Journal of Water Resource and Protection, 11, 810-829.
[4]  Jakubowska, N. and Szelag-Wasielewska, E., (2015) Toxic Picoplanktonic Cyanobacteria—Review. Marine Drugs, 13, 1497-1518.
[5]  Chapman, A.D. and Foss, A. (2019) GreenWater Laboratories Potentially Toxigenic (PTOX) Cyanobacteria List. GreenWater Laboratories, Palatka.
[6]  Gin, K.Y-H., Sim, Z.Y., Goh, K.C., Kok, J.W.K., Te, S.H., Tran, N.H., Li, W. and He, Y. (2021) Novel Cyanotoxin-Producing Synechococcus in Tropical Lakes. Water Research, 192, Article ID: 116828.
[7]  Leland, N.J., Pearson, K.C., Burke, M., Miller, J.T. Watts, A. and Haney, J.F. (2023) Isolation of Picocyanobacteria (Order Synechococcales) and Occurrence of the Cyanotoxin Anatoxin-A in a Shallow Mesotrophic Pond. Journal of Water Resource and Protection, 15, 299-314.
[8]  Amiscience Corporation (2022) Certificate of Calibration, Phycocyanin and Phycoerythrin Fluorometer.
[9]  Gold Standard Diagnostics, Anatoxin-A(VFDF) Product # 520060 Warminster, PA.
[10]  Parada, A.E., Needham, D.M. and Fuhrman, J.A. (2016) Every Base Matters: Assessing Small Subunit rRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environmental Microbiology, 18, 1403-1414.
[11]  Bolyen, E., Rideout, J. R., Dillon, M.R., Bokulich, N.A., Abnet, C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M. and Caporaso, J.G. (2018) QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science. PeerJ, Preprints.
[12]  Rippka, R., Derulles, J., Waterbury, J.B., Herdman, M.and Stanier, R.Y. (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology, 111, 1-61.
[13]  Bryant, D.A. (1982) Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in Cyanobacteria. Journal of General Microbiology, 128, 835-844.
[14]  Sánchez-Baracaldo, P., Bianchini, G., Di Cesare, A., Callieri, C. and Chrismas, N.A.M. (2019) Insights into the Evolution of Picocyanobacteria and Phycoerythrin Genes (mpeBA and cpeBA). Frontiers in Microbiology, 10, Article 45.
[16]  Teikari, J.E., Popin, R.V., Hou, S., Wahlsten, M., Hess, W.R. and Sivonen, K. (2019) Insight into the Genome and Brackish Water Adaptation Strategies of Toxin and Bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Scientific Reports, 9, Article 4888.
[17]  Houliez, E., Briand, E., Malo, F., Rovillon, G.-A., Hervé, F., Robert, E., Marchand, L., Zykwinska, A. and Caruana, A.M.N. (2021) Physiological Changes Induced by Sodium Chloride Stress in Aphanizomenon gracile, Cylindrospermopsis raciborskii and Dolichospermum sp. Harmful Algae, 103, Article ID: 102028.
[18]  Schallenberg, L.A., Pearman, J.K., Burns, C.A. and Wood, S.A. (2021) Metabarcoding Reveals Lacustrine Picocyanobacteria Respond to Environmental Change through Adaptive Community Structuring. Frontiers in Microbiology, 12, Article 757929.
[19]  Lima, S.T., Fallon, T.R., Cordoza, J.L. Chekhan, J.R., Delbaje, E. hopiavuori, A.R., et al. (2022) Biosynthesis of Guanitoxin Enables Global Environmental Detection in Freshwater Cyanobacteria. Journal of the American Chemical Society, 144, 9372-9379.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413