|
线粒体功能相关检测方法的研究进展
|
Abstract:
线粒体(mitochondria)是真核细胞重要的细胞器,是细胞的“能量工厂”。线粒体功能障碍主要表现为线粒体形态、结构和功能异常,包括:线粒体异常体积、数量的增加或减少、线粒体膜电位异常,线粒体DNA损伤等。研究发现,这些线粒体结构、功能的变化与多种疾病的发生发展密切相关。而随着生物检测技术的发展,对线粒体结构和功能的检测方法也不断更新,现就线粒体结构和功能相关的检测方法及其研究进展作一综述。
Mitochondria are important organelles of eukaryotic cells and the “energy factory” of cells. Mito-chondrial dysfunction mainly manifests as abnormal mitochondrial morphology, structure, and function, including: abnormal volume, increase or decrease of mitochondrial number, abnormal mitochondrial membrane potential, mitochondrial DNA damage, etc. Studies have found that these changes in mitochondrial structure and function are closely related to the occurrence and devel-opment of various diseases. With the development of bioassay technology, the detection methods of mitochondrial structure and function are constantly updated, and the detection methods and re-search progress related to mitochondrial structure and function are reviewed here.
[1] | Kiriyama, Y. and Nochi, H. (2017) Intra- and Intercellular Quality Control Mechanisms of Mitochondria. Cells, 7, Article 1. https://doi.org/10.3390/cells7010001 |
[2] | Exner, N., Lutz, A.K., Haass, C. and Winklhofer, K.F. (2012) Mito-chondrial Dysfunction in Parkinson’s Disease: Molecular Mechanisms and Pathophysiological Consequences. The EMBO Journal, 31, 3038-3062.
https://doi.org/10.1038/emboj.2012.170 |
[3] | V?lgyi, K., Badics, K., Sialana, F.J., et al. (2018) Early Presympto-matic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 55, 7839-7857. https://doi.org/10.1007/s12035-018-0955-6 |
[4] | 申屠路媚, 牟艳玲. 线粒体功能障碍机制及其相关疾病研究进展[J]. 生命科学, 2018, 30(1): 87-93. |
[5] | 肖义军, 俞如旺. 用高倍镜观察线粒体实验的建议[J]. 生物学教学, 2011, 36(2): 60. |
[6] | Granata, C., Jamnick, N.A. and Bishop, D.J. (2018) Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Medicine, 48, 1809-1828. https://doi.org/10.1007/s40279-018-0936-y |
[7] | Hammond, K., Ryadnov, M.G. and Hoogenboom, B.W. (2021) Atomic Force Microscopy to Elucidate How Peptides Disrupt Membranes. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1863, Article ID: 183447.
https://doi.org/10.1016/j.bbamem.2020.183447 |
[8] | Heath, G.R., Kots, E., Robertson, J.L., et al. (2021) Localiza-tion Atomic Force Microscopy. Nature, 594, 385-390.
https://doi.org/10.1038/s41586-021-03551-x |
[9] | Müller, D.J., Dumitru, A.C., Lo Giudice, C., et al. (2021) Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Sys-tems. Chemical Reviews, 121, 11701-11725.
https://doi.org/10.1021/acs.chemrev.0c00617 |
[10] | Vogt, N. (2021) Atomic Force Microscopy in Super-Resolution. Nature Methods, 18, 859.
https://doi.org/10.1038/s41592-021-01246-9 |
[11] | Nikolaisen, J., Nilsson, L.I.H., Pettersen, I.K.N., et al. (2014) Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties. PLOS ONE, 9, e101365.
https://doi.org/10.1371/journal.pone.0101365 |
[12] | Kolossov, V.L., Sivaguru, M., Huff, J., et al. (2018) Airyscan Super-Resolution Microscopy of Mitochondrial Morphology and Dynamics in Living Tumor Cells. Microscopy Re-search and Technique, 81, 115-128.
https://doi.org/10.1002/jemt.22968 |
[13] | Rocha, E.M., De Miranda, B. and Sanders, L.H. (2018) α-Synuclein: Pa-thology, Mitochondrial Dysfunction and Neuroinflammation in Parkinson’s Disease. Neurobiology of Disease, 109, 249-257.
https://doi.org/10.1016/j.nbd.2017.04.004 |
[14] | Szymański, J., Janikiewicz, J., Michalska, B., et al. (2017) Interac-tion of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences, 18, Article 1576. https://doi.org/10.3390/ijms18071576 |
[15] | Bastian, C., Day, J., Politano, S., et al. (2019) Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter after Ischemia. NeuroMolecular Medicine, 21, 484-492. https://doi.org/10.1007/s12017-019-08550-w |
[16] | Csordás, G., Weaver, D. and Hajnóczky, G. (2018) Endoplas-mic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends in Cell Biology, 28, 523-540. https://doi.org/10.1016/j.tcb.2018.02.009 |
[17] | Correia-álvarez, E., Keating, J.E., Glish, G., Tarran, R. and Sassano, M.F. (2020) Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cellular Membrane Potential Are Pre-dictors of E-Liquid Induced Cellular Toxicity. Nicotine & Tobacco Research, 22, S4-S13. https://doi.org/10.1093/ntr/ntaa177 |
[18] | Feng, R., Guo, L., Fang, J., et al. (2019) Construction of the FRET Pairs for the Visualization of Mitochondria Membrane Potential in Dual Emission Colors. Analytical Chemistry, 91, 3704-3709.
https://doi.org/10.1021/acs.analchem.8b05822 |
[19] | Wang, C., Wang, G., Li, X., et al. (2017) Highly Sensitive Flu-orescence Molecular Switch for the Ratio Monitoring of Trace Change of Mitochondrial Membrane Potential. Analytical Chemistry, 89, 11514-11519.
https://doi.org/10.1021/acs.analchem.7b02781 |
[20] | Rossow, H.A., Acetoze, G., Champagne, J., et al. (2018) Measuring Liver Mitochondrial Oxygen Consumption and Proton Leak Kinetics to Estimate Mitochondrial Respiration in Holstein Dairy Cattle. Journal of visualized experiments, 141. https://doi.org/10.3791/58387 |
[21] | Zhang, H., Chang, Z., Mehmood, K., et al. (2018) Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway. Biological Trace Element Research, 181, 62-70. https://doi.org/10.1007/s12011-017-1024-0 |
[22] | Marchi, S., Pa-tergnani, S., Missiroli, S., et al. (2018) Mitochondrial and Endoplasmic Reticulum Calcium Homeostasis and Cell Death. Cell Calcium, 69, 62-72. https://doi.org/10.1016/j.ceca.2017.05.003 |
[23] | Boyman, L., Karbowski, M. and Lederer, W.J. (2020) Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends in Molecular Medicine, 26, 21-39. https://doi.org/10.1016/j.molmed.2019.10.007 |
[24] | Wacquier, B., Combettes, L. and Dupont, G. (2020) Dual Dynamics of Mitochondrial Permeability Transition Pore Opening. Scientific Reports, 10, Article No. 3924. https://doi.org/10.1038/s41598-020-60177-1 |
[25] | 程明月, 郭海, 郑宏. 糖尿病心肌中线粒体膜通透性转化孔变化的研究进展[J]. 新医学, 2016, 47(2): 73-75. |
[26] | Morciano, G., Naumova, N., Koprowski, P., et al. (2021) The Mitochondrial Permeability Transition Pore: An Evolving Concept Critical for Cell Life and Death. Biological Re-views, 96, 2489-2521. https://doi.org/10.1111/brv.12764 |
[27] | Lee, P., Chandel, N.S. and Simon, M.C. (2020) Cel-lular Adaptation to Hypoxia through Hypoxia Inducible Factors and Beyond. Nature Reviews Molecular Cell Biology, 21, 268-283. https://doi.org/10.1038/s41580-020-0227-y |
[28] | 张鑫, 黎萍, 王钰涵, 等. 血管性痴呆认知功能障碍与海马线粒体功能异常的机制研究进展[J]. 中国全科医学, 2022, 25(23): 2910-2916. |
[29] | Sch?nfeld, P. and Wojtczak, L. (2016) Short- and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954. https://doi.org/10.1194/jlr.R067629 |
[30] | Mcfarlane, C.R. and Murray, J.W. (2020) A Sensitive Coupled Enzyme Assay for Measuring Kinase and ATPase Kinetics Using ADP-Specific Hexokinase. Bio-Protocol Journal, 10, e3599. https://doi.org/10.21769/BioProtoc.3599 |
[31] | Tan, K.Y., Li, C.Y., Li, Y.F., et al. (2017) Real-Time Monitoring ATP in Mitochondrion of Living Cells: A Specific Fluorescent Probe for ATP by Dual Recognition Sites. Analytical Chemistry, 89, 1749-1756.
https://doi.org/10.1021/acs.analchem.6b04020 |
[32] | De Col, V., Fuchs, P., Nietzel, T., et al. (2017) ATP Sensing in Living Plant Cells Reveals Tissue Gradients and Stress Dynamics of Energy Physiology. eLife, 6, e26770. https://doi.org/10.7554/eLife.26770 |
[33] | Klier, P.E.Z., Martin, J.G. and Miller, E.W. (2021) Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Masked Rhodamine Voltage Reporter. Journal of the American Chemical Society, 143, 4095-4099.
https://doi.org/10.1021/jacs.0c13110 |
[34] | Mita, M., Sugawara, I., Harada, K., et al. (2022) Development of Red Genetically Encoded Biosensor for visuaLization of Intracellular Glucose Dynamics. Cell Chemical Biology, 29, 98-108.E4.
https://doi.org/10.1016/j.chembiol.2021.06.002 |
[35] | Murata, O., Shindo, Y., Ikeda, Y., et al. (2020) Near-Infrared Fluorescent Probes for Imaging of Intracellular Mg2+ and Application to Multi-Color Imaging of Mg2+, ATP, and Mito-chondrial Membrane Potential. Analytical Chemistry, 92, 966-974. https://doi.org/10.1021/acs.analchem.9b03872 |
[36] | Arai, S., Kriszt, R., Harada, K., et al. (2018) RGB-Color Inten-siometric Indicators to Visualize Spatiotemporal Dynamics of ATP in Single Cells. Angewandte Chemie International Edition, 57, 10873-10878.
https://doi.org/10.1002/anie.201804304 |
[37] | Formosa, L.E., Dibley, M.G., Stroud, D.A. and Ryan, M.T. (2018) Building a Complex Complex: Assembly of Mitochondrial Respiratory Chain Complex I. Seminars in Cell & Develop-mental Biology, 76, 154-162.
https://doi.org/10.1016/j.semcdb.2017.08.011 |
[38] | Vankayala, R. and Hwang, K.C. (2018) Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials, 30, e1706320.
https://doi.org/10.1002/adma.201706320 |
[39] | Wang, S., Zhang, Z., Wei, S., et al. (2021) Near-Infrared Light-Controllable MXene Hydrogel for Tunable on-Demand Release of Therapeutic Proteins. Acta Biomaterialia, 130, 138-148. https://doi.org/10.1016/j.actbio.2021.05.027 |
[40] | Bock, F.J. and Tait, S.W.G. (2020) Mitochondria as Multifaceted Regulators of Cell Death. Nature Reviews Molecular Cell Biology, 21, 85-100. https://doi.org/10.1038/s41580-019-0173-8 |
[41] | Sharifi-Rad, M., Anil Kumar, N.V., Zucca, P., et al. (2020) Life-style, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, Article 694.
https://doi.org/10.3389/fphys.2020.00694 |
[42] | Caliskan, S., Oldenhof, H., Brogna, R., et al. (2021) Spectroscopic Assessment of Oxidative Damage in Biomolecules and Tissues. Spectrochimica Acta Part A: Molecular and Biomolecu-lar Spectroscopy, 246, Article ID: 119003.
https://doi.org/10.1016/j.saa.2020.119003 |
[43] | 王翠平, 姚梦宇, 叶柳, 等. 电子自旋共振技术在生物领域的应用进展[J]. 大学物理实验, 2020, 33(1): 29-33. |