全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ADAMTS-13调控急性心肌梗死的机制研究
Study on the Mechanism of ADAMTS-13 Regulating Acute Myocardial Infarction

DOI: 10.12677/ACM.2023.1391999, PP. 14297-14303

Keywords: 急性心肌梗死,ADAMTS-13,VWF,血栓形成,炎症反应
Acute Myocardial Infarction
, ADAMTS-13, VWF, Thrombosis, Inflammatory Response

Full-Text   Cite this paper   Add to My Lib

Abstract:

ADAMTS-13是一种金属蛋白酶,可特异性切割血管性血友病因子(VWF),从而防止白细胞过度募集,下调炎症和血栓的形成。ADAMTS-13与VWF现在被认为在越来越多的血管炎症和血栓形成的疾病中起重要作用,特别是在急性心肌梗死(AMI)中研究越来越深入。ADAMTS-13结构与功能和AMI发生机制密切相关。本篇综述主要阐述ADAMTS-13调控AMI的作用机制。
ADAMTS-13 is a metalloproteinase secreted in the blood that can specifically cleave von Willebrand Factor (VWF), thereby preventing excessive recruitment of white blood cells and downregulating inflammation and thrombosis formation. ADAMTS-13 and VWF are now considered to play an im-portant role in an increasing number of vascular inflammation and thrombosis diseases, especially in the study of acute myocardial infarction (AMI). The structure and function of ADAMTS-13 are closely related to the mechanism of AMI occurrence. This review mainly elaborates on the mecha-nism of ADAMTS-13 in regulating acute myocardial infarction.

References

[1]  Mozaffarian, D., Benjamin, E.J., Go, A.S., et al. (2015) Heart Disease and Stroke Statistics-2016 Update: A Report from the American Heart Association. Circulation, 133, e38-360.
[2]  雍婧雯, 王志坚, 林徐泽, 等. 急性心肌梗死患者患病构成比及住院死亡率变化趋势[J]. 中华心血管病杂志, 2019, 47(3): 209-214.
https://doi.org/10.3760/cma.j.issn.0253-3758.2019.03.006
[3]  Blennerhassett, R., Curnow, J. and Pasalic, L. (2020) Immune-Mediated Thrombotic Thrombocytopenic Purpura: A Narrative Review of Diagnosis and Treatment in Adults. Seminars in Thrombosis and Hemostasis, 46, 289-301.
https://doi.org/10.1055/s-0040-1708541
[4]  DeYoung, V., Singh, K. and Kretz, C.A. (2022) Mechanisms of ADAMTS13 Regulation. Journal of Thrombosis and Haemostasis, 20, 2722-2732.
https://doi.org/10.1111/jth.15873
[5]  Wu, T., Lin, J., Cruz, M.A., Dong, J.-F. and Zhu, C. (2009) Force-Induced Cleavage of Single VWFA1A2A3 Tridomains by ADAMTS-13. Blood, 115, 370-378.
https://doi.org/10.1182/blood-2009-03-210369
[6]  Zheng, X., Chung, D., Takayama, T.K., et al. (2001) Structure of Von Willebrand Factor-Cleaving Protease (ADAMTS13), a Metalloprotease Involved in Thrombotic Thrombocytope-nic Purpura. Journal of Biological Chemistry, 276, 41059- 41063.
https://doi.org/10.1074/jbc.C100515200
[7]  Verbij, F., Sorvillo, N., Kaijen, P., et al. (2016) The Macro-phage-Specific CD163 Is an Endocytic Receptor for Von Willebrand Factor (VWF) Cleaving Protease ADAMTS13. Blood, 128, Article No. 17.
https://doi.org/10.1182/blood.V128.22.17.17
[8]  Woods, A.I., Paiva, J., Dos Santos, C., Alberto, M.F. and Sánchez-Luceros, A. (2022) From the Discovery of ADAMTS13 to Current Understanding of Its Role in Health and Disease. Seminars in Thrombosis and Hemostasis, 49, 284-294.
https://doi.org/10.1055/s-0042-1758059
[9]  Kelwick, R., Desanlis, I., Wheeler, G.N. and Edwards, D.R. (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) Family. Genome Biology, 16, Arti-cle No. 113.
https://doi.org/10.1186/s13059-015-0676-3
[10]  Kim, H.J., Xu, Y., Petri, A., et al. (2021) Crystal Structure of ADAMTS13 CUB Domains Reveals Their Role in Global Latency. Science Advances, 7.
https://doi.org/10.1126/sciadv.abg4403
[11]  Zhu, J., Muia, J., Gupta, G., et al. (2019) Exploring the “Minimal” Structure of a Functional ADAMTS13 by Mutagenesis and Small-Angle X-Ray Scattering. Blood, 133, 1909-1918.
https://doi.org/10.1182/blood-2018-11-886309
[12]  Muia, J., Zhu, J., Greco, S.C., et al. (2019) Phylogenetic and Functional Analysis of ADAMTS13 Identifies Highly Conserved Domains Essential for Allosteric Regulation. Blood, 133, 1899-1908.
https://doi.org/10.1182/blood-2018-11-886275
[13]  Ercig, B., Wichapong, K., Reutelingsperger, C.P.M., et al. (2018) Insights into 3D Structure of ADAMTS13: A Stepping Stone towards Novel Therapeutic Treatment of Throm-botic Thrombocytopenic Purpura. Thrombosis and Haemostasis, 118, 28-41.
https://doi.org/10.1160/TH17-06-0404
[14]  Morici, N., Cantoni, S., Panzeri, F., et al. (2017) Von Willebrand Fac-tor and Its Cleaving Protease ADAMTS13 Balance in Coronary Artery Vessels: Lessons Learned from Thrombotic Thrombocytopenic Purpura. A Narrative Review. Thrombosis Research, 155, 78-85.
https://doi.org/10.1016/j.thromres.2017.05.011
[15]  Schelpe, A.S., Petri, A., Roose, E., et al. (2020) Antibodies That Conformationally Activate ADAMTS13 Allosterically Enhance Metalloprotease Domain Function. Blood Advances, 4, 1072-1080.
https://doi.org/10.1182/bloodadvances.2019001375
[16]  Deforche, L., Roose, E., Vandenbulcke, A., et al. (2015) Linker Regions and Flexibility around the Metalloprotease Domain Account for Conformational Activation of ADAMTS-13. Journal of Thrombosis and Haemostasis, 13, 2063- 2075.
https://doi.org/10.1111/jth.13149
[17]  L?f, A., Müller, J.P. and Brehm, M.A. (2017) A Biophysical View on Von Willebrand Factor Activation. Journal of Cellular Physiology, 233, 799-810.
https://doi.org/10.1002/jcp.25887
[18]  Zhang, C., Kelkar, A. and Neelamegham, S. (2019) Von Willebrand Factor Self-Association Is Regulated by the Shear-Dependent Unfolding of the A2 Domain. Blood Advances, 3, 957-968.
https://doi.org/10.1182/bloodadvances.2018030122
[19]  Aponte-Santamaría, C., Huck, V., Posch, S., et al. (2015) Force-Sensitive Autoinhibition of the Von Willebrand Factor Is Mediated by Interdomain Interactions. Biophysical Jour-nal, 108, 2312-2321.
https://doi.org/10.1016/j.bpj.2015.03.041
[20]  Petri, A., Kim, H.J., Xu, Y., et al. (2019) Crystal Structure and Sub-strate-Induced Activation of ADAMTS13. Nature Communications, 10, Article No. 3781.
https://doi.org/10.1038/s41467-019-11474-5
[21]  South, K., Freitas, M.O. and Lane, D.A. (2017) A Model for the Conformational Activation of the Structurally Quiescent Metalloprotease ADAMTS13 by Von Willebrand Factor. Jour-nal of Biological Chemistry, 292, 5760-5769.
https://doi.org/10.1074/jbc.M117.776732
[22]  Matsumoto, H., Takeba, J., Umakoshi, K., et al. (2021) ADAMTS13 Activity Decreases in the Early Phase of Trauma Associated with Coagulopathy and Systemic Inflamma-tion: A Prospective Observational Study. Thrombosis Journal, 19, Article No. 17.
https://doi.org/10.1186/s12959-021-00270-1
[23]  Zheng, X.L., Vesely, S.K., Cataland, S.R., et al. (2020) ISTH Guidelines for the Diagnosis of Thrombotic Thrombocytopenic Purpura. Journal of Thrombosis and Haemostasis, 18, 2486-2495.
https://doi.org/10.1111/jth.15006
[24]  Smock, K.J. (2021) ADAMTS13 Testing Update: Focus on Laboratory Aspects of Difficult Thrombotic Thrombocytopenic Purpura Diagnoses and Effects of New Therapies. Inter-national Journal of Laboratory Hematology, 43, 103-108.
https://doi.org/10.1111/ijlh.13557
[25]  Favaloro, E.J., Henry, B.M. and Lippi, G. (2021) Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Seminars in Thrombosis and Hemostasis, 47, 400-418.
https://doi.org/10.1055/s-0041-1727282
[26]  Henry, B.M., Benoit, S.W., et al. (2020) ADAMTS13 Activity to Von Willebrand Factor Antigen Ratio Predicts Acute Kidney Injury in Patients with COVID-19: Evidence of SARS-CoV-2 Induced Secondary Thrombotic Microangiopathy. International Journal of Laboratory Hematology, 43, 129-136.
https://doi.org/10.1111/ijlh.13415
[27]  Andersson, H.M., Siegerink, B., Luken, B.M., et al. (2011) High VWF, Low ADAMTS13, and Oral Contraceptives Increase the Risk of Ischemic Stroke and Myocardial Infarction in Young Women. Blood, 119, 1555-1560.
https://doi.org/10.1182/blood-2011-09-380618
[28]  Fujioka, M., Hayakawa, K., Mishima, K., et al. (2009) ADAMTS13 Gene Deletion Aggravates Ischemic Brain Damage: A Possible Neuroprotective Role of ADAMTS13 by Ameliorating Postischemic Hypoperfusion. Blood, 115, 1650-1653.
https://doi.org/10.1182/blood-2009-06-230110
[29]  Denorme, F., Langhauser, F., Desender, L., et al. (2016) ADAMTS13-Mediated Thrombolysis of t-PA-Resistant Occlusions in Ischemic Stroke in Mice. Blood, 127, 2337-2345.
https://doi.org/10.1182/blood-2015-08-662650
[30]  Witsch, T., Martinod, K., Sorvillo, N., et al. (2018) Recombi-nant Human ADAMTS13 Treatment Improves Myocardial Remodeling and Functionality after Pressure Overload Injury in Mice. Journal of the American Heart Association, 7, e007004.
https://doi.org/10.1161/JAHA.117.007004
[31]  Green, D., Tian, L., Greenland, P., et al. (2016) Association of the Von Willebrand Factor-ADAMTS13 Ratio with Incident Cardiovascular Events in Patients with Peripheral Arterial Dis-ease. Clinical and Applied Thrombosis/Hemostasis, 23, 807-813.
https://doi.org/10.1177/1076029616655615
[32]  De Meyer, S.F., Savchenko, A.S., Haas, M.S., et al. (2012) Pro-tective Anti-Inflammatory Effect of ADAMTS13 on Myocardial Ischemia/Reperfusion Injury in Mice. Blood, 120, 5217-5223.
https://doi.org/10.1182/blood-2012-06-439935
[33]  Rossato, P., Glantschnig, H., Canneva, F., et al. (2022) Treat-ment with Recombinant ADAMTS13, Alleviates Hypoxia/Reoxygenation-Induced Pathologies in a Mouse Model of Human Sickle Cell Disease. Journal of Thrombosis and Haemostasis, 21, 269-275.
https://doi.org/10.1016/j.jtha.2022.10.016
[34]  Ozawa, K., Muller, M.A., Varlamov, O., et al. (2022) Reduced Proteolytic Cleavage of Von Willebrand Factor Leads to Aortic Valve Stenosis and Load-Dependent Ventricular Remod-eling. JACC: Basic to Translational Science, 7, 642-655.
https://doi.org/10.1016/j.jacbts.2022.02.021
[35]  Al-Masri, A.A., Habib, S.S., Hersi, A., et al. (2020) Effect of Acute Myocardial Infarction on a Disintegrin and Metalloprotease with Thrombospondin Motif 13 and Von Willebrand Factor and Their Relationship with Markers of Inflammation. International Journal of Vascular Medicine, 2020, Article ID: 4981092.
https://doi.org/10.1155/2020/4981092
[36]  Swirski, F.K. and Nahrendorf, M. (2018) Cardioimmunology: The Immune System in Cardiac Homeostasis and Disease. Nature Reviews Immunology, 18, 733-744.
https://doi.org/10.1038/s41577-018-0065-8
[37]  Ozawa, K., Muller, M.A., Varlamov, O., et al. (2020) Proteolysis of Von Willebrand Factor Influences Inflammatory Endothelial Activation and Vascular Compliance in Atherosclerosis. JACC: Basic to Translational Science, 5, 1017-1028.
https://doi.org/10.1016/j.jacbts.2020.08.009
[38]  Ma, C., Jiang, Y., Zhang, X., et al. (2018) Isoquercetin Amelio-rates Myocardial Infarction through Anti-Inflammation and Anti-Apoptosis Factor and Regulating TLR4-NF-κB Signal Pathway. Molecular Medicine Reports, 17, 6675-6680.
https://doi.org/10.3892/mmr.2018.8709
[39]  Gandhi, C., Khan, M.M., Lentz, S.R. and Chauhan, A.K. (2011) ADAMTS13 Reduces Vascular Inflammation and the Development of Early Atherosclerosis in Mice. Blood, 119, 2385-2391.
https://doi.org/10.1182/blood-2011-09-376202
[40]  Shen, L., Lu, G., Dong, N., et al. (2013) Simvas-tatin Increases ADAMTS13 Expression in Podocytes. Thrombosis Research, 132, 94-99.
https://doi.org/10.1016/j.thromres.2013.05.024
[41]  Claus, R.A., Bockmeyer, C.L., Sossdorf, M. and Losche, W. (2010) The Balance Between Von-Willebrand Factor and Its Cleaving Protease ADAMTS13: Biomarker in Systemic In-flammation and Development of Organ Failure? Current Molecular Medicine, 10, 236-248.
https://doi.org/10.2174/156652410790963367
[42]  Russell, R.T., McDaniel, J.K., Cao, W., et al. (2018) Low Plasma ADAMTS13 Activity Is Associated with Coagulopathy., Endothelial Cell Damage and Mortality after Severe Paediatric Trauma. Thrombosis and Haemostasis, 118, 676-687.
https://doi.org/10.1055/s-0038-1636528
[43]  Zhang, H., Yuan, Y.L., Wang, Z., et al. (2013) Sequential, Timely and Controlled Expression of HVEGF165 and Ang-1 Effectively Improves Functional Angiogenesis and Cardiac Func-tion in Vivo. Gene Therapy, 20, 893-900.
https://doi.org/10.1038/gt.2013.12
[44]  Zheng, Y., Xiao, M., Li, L., et al. (2017) Remote Physiological Ischemic Training Promotes Coronary Angiogenesis via Molecular and Cellular Mobilization After Myocardial Ischemia. Cardio-vascular Therapeutics, 35, e12257.
https://doi.org/10.1111/1755-5922.12257
[45]  Lee, M., Keener, J., Xiao, J., Zheng, X.L. and Rodgers, G.M. (2014) ADAMTS13 and Its Variants Promote Angiogenesis via Upregulation of VEGF and VEGFR2. Cellular and Molecular Life Sciences, 72, 349-356.
https://doi.org/10.1007/s00018-014-1667-3
[46]  Lee, M., Rodansky, E.S., Smith, J.K. and Rodgers, G.M. (2012) ADAMTS13 Promotes Angiogenesis and Modulates VEGF-Induced Angiogenesis. Microvascular Research, 84, 109-115.
https://doi.org/10.1016/j.mvr.2012.05.004
[47]  Xu, H., Cao, Y., Yang, X., et al. (2017) ADAMTS13 Controls Vascular Remodeling by Modifying VWF Reactivity during Stroke Recovery. Blood, 130, 11-22.
https://doi.org/10.1182/blood-2016-10-747089
[48]  张成森, 刘锐, 鲍永辉, 时金栗, 李长江. 转化生长因子-β/Smads信号通路在急性心肌梗死左心室重构中的研究进展[J]. 中国心血管病研究, 2023, 21(3): 213-218.
https://doi.org/10.3969/j.issn.1672-5301.2023.03.005
[49]  Favaloro, E.J., Pasalic, L., Henry, B. and Lippi, G. (2021) Laboratory Testing for ADAMTS13: Utility for TTP Diagnosis/Exclusion and beyond. American Journal of Hematology, 96, 1049-1055.
https://doi.org/10.1002/ajh.26241

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133