全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

血钙与创伤性脑损伤出血性进展及神经预后相关性的研究进展
Research Progress on the Correlation between Blood Calcium and Hemorrhagic Progression and Neurological Prognosis in Traumatic Brain Injury

DOI: 10.12677/ACM.2023.1391998, PP. 14290-14296

Keywords: 凝血障碍,出血性进展,创伤性颅脑损伤,脑实质出血,血钙
Coagulopathy
, Hemorrhagic Progression, Traumatic Brain Injury, Intraparenchymal Hemorrhage, Blood Calcium

Full-Text   Cite this paper   Add to My Lib

Abstract:

创伤性脑损伤(traumatic brain injury, TBI)是世界范围内致残和死亡的主要原因之一,其后续发生的出血性进展(Hemorrhagic progression of contusion, HPC)往往与高死亡率,较差的预后相关,血钙在人体凝血功能及TBI病理生理机制中扮演着重要的角色,最近的研究表明血钙与TBI后HPC的发生及其神经预后相关,为评估HPC的发生及TBI患者的预后提供了新的思路,本文将从TBI的病理生理学及HPC的发生机制开始阐述,并进一步探讨血清钙可能参与的HPC病理生理潜在机制及其与TBI患者神经功能预后的联系。
Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide, and their subsequent hemorrhagic progression of contusion (HPC) is often associated with high mortal-ity and poor prognosis. Blood calcium plays an important role in human coagulation function and the pathophysiological mechanism of TBI. Recent studies have shown that blood calcium is corre-lated with the occurrence of HPC and its neurological prognosis after TBI, providing new ideas for evaluating the occurrence of HPC and the prognosis of TBI patients. This paper will begin with the pathophysiology of TBI and the pathogenesis of HPC, and further explore the potential pathophysi-ological mechanism of HPC that serum calcium may be involved in and its relationship with the neurological prognosis of TBI patients.

References

[1]  Gunning, A.C., Lansink, K.W.W., van Wessem, K.J.P., Balogh, Z.J., Rivara, F.P., Maier, R.V. and Leenen, L.P.H. (2015) Demographic Patterns and Outcomes of Patients in Level I Trauma Centers in Three International Trauma Sys-tems. World Journal of Surgery, 39, 2677-2684.
https://doi.org/10.1007/s00268-015-3162-x
[2]  Carnevale, J.A., Segar, D.J., Powers, A.Y., Shah, M., Doberstein, C., Drapcho, B., Morrison, J.F., Williams, J.R., Collins, S., Monteiro, K. and Asaad, W.F. (2018) Blossoming Contusions: Identifying Factors Contributing to the Expansion of Traumatic In-tracerebral Hemorrhage. Journal of Neurosurgery, 129, 1305-1316.
https://doi.org/10.3171/2017.7.JNS17988
[3]  Chang, E.F., Meeker, M. and Holland, M.C. (2007) Acute Trau-matic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neurosurgery, 61, 231.
https://doi.org/10.1227/01.neu.0000279217.45881.69
[4]  Lobato, R.D., Gomez, P.A., Alday, R., Rivas, J.J., Dominguez, J., Cabrera, A., Turanzas, F.S., Benitez, A. and Rivero, B. (1997) Sequential Computerized Tomography Changes and Related Final Outcome in Severe Head Injury Patients. Acta Neurochirurgica, 139, 385-391.
https://doi.org/10.1007/BF01808871
[5]  Servadei, F., Nanni, A., Nasi, M.T., Zappi, D., Vergoni, G., Giuliani, G. and Arista, A. (1995) Evolving Brain Lesions in the First 12 Hours after Head Injury: Analysis of 37 Comatose Patients. Neurosurgery, 37, 899-907.
https://doi.org/10.1097/00006123-199511000-00008
[6]  Adatia, K., Newcombe, V.F.J. and Menon, D.K. (2021) Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influ-ence on Outcome. Neurocritical Care, 34, 312-324.
https://doi.org/10.1007/s12028-020-00994-4
[7]  Inoue, Y., Miyashita, F., Toyoda, K. and Minematsu, K. (2013) Low Serum Calcium Levels Contribute to Larger Hematoma Volume in Acute Intracerebral Hemorrhage. Stroke, 44, 2004-2006.
https://pubmed.ncbi.nlm.nih.gov/23674530/
[8]  Zhu, R.D., He, X.L., Du, Y.Q., et al. (2020) The Relationship between Low Serum Magnesium Level and Intracerebral Hemorrhage Hematoma Expansion: Protocol for a Systematic Review and Meta-Analysis. Medicine, 99, e18719.
https://pubmed.ncbi.nlm.nih.gov/31914086/
[9]  Hoyt, D.B. (2004) A Clinical Review of Bleeding Dilemmas in Trauma. Seminars in Hematology, 41, 40-43.
https://doi.org/10.1053/j.seminhematol.2003.11.009
[10]  Greuters, S., van den Berg, A., Franschman, G., Viersen, V.A., Beishuizen, A., Peerdeman, S.M., Boer, C. and ALARM- BLEEDING Investigators (2011) Acute and Delayed Mild Coagulopathy Are Related to Outcome in Patients with Isolated Traumatic Brain Injury. Critical Care, 15, Article No. R2.
https://doi.org/10.1186/cc9399
[11]  Kurland, D., Hong, C., Aarabi, B., Gerzanich, V. and Marc Simard, J. (2012) Hemorrhagic Progression of a Contusion after Traumatic Brain Injury: A Review. Journal of Neurotrauma, 29, 19-31.
https://doi.org/10.1089/neu.2011.2122
[12]  Loggini, A., El Ammar, F., Mansour, A., Kramer, C.L., Gold-enberg, F.D. and Lazaridis, C. (2021) Association between Electrolyte Levels at Presentation and Hematoma Expansion and Outcome in Spontaneous Intracerebral Hemorrhage: A Systematic Review. Journal of Critical Care, 61, 177-185.
https://doi.org/10.1016/j.jcrc.2020.10.029
[13]  Jafari, M., Di Napoli, M., Datta, Y.H., Bershad, E.M. and Divani, A.A. (2019) The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any? Neu-rocritical Care, 31, 188-195.
https://doi.org/10.1007/s12028-018-0564-2
[14]  Zhang, P., Tu, Q., Ni, Z.H., Zheng, Z.Z., Chen, Y., Yan, L., Bao, H., Zhuge, Q.C. and Ni, H.Q. (2022) Association between Serum Calcium Level and Hemorrhagic Progression in Pa-tients with Traumatic Intraparenchymal Hemorrhage: Investigating the Mediation and Interaction Effects of Coagulopathy. Journal of Neurotrauma, 39, 508-519.
https://doi.org/10.1089/neu.2021.0388
[15]  Weber, J.T. (2012) Altered Calcium Signaling following Traumatic Brain Injury. Frontiers in Pharmacology, 3, Article 60.
https://doi.org/10.3389/fphar.2012.00060
[16]  Deshpande, L.S., Sun, D.A., Sombati, S., Baranova, A., Wilson, M.S., Attkisson, E., Hamm, R.J. and DeLorenzo, R.J. (2008) Alter-ations in Neuronal Calcium Levels Are Associated with Cognitive Deficits after Traumatic Brain Injury. Neuroscience Letters, 441, 115-119.
https://doi.org/10.1016/j.neulet.2008.05.113
[17]  Weber, J.T. (2004) Calcium Homeostasis following Traumatic Neuronal Injury. Current Neurovascular Research, 1, 151-171.
https://doi.org/10.2174/1567202043480134
[18]  Gurkoff, G., Shahlaie, K., Lyeth, B. and Berman, R. (2013) Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury. Pharmaceuticals, 6, 788-812.
https://doi.org/10.3390/ph6070788
[19]  Badarni, K., Harush, N., Andrawus, E., Bahouth, H., Bar-Lavie, Y., Raz, A., Roimi, M. and Epstein, D. (2023) Association between Admission Ionized Calcium Level and Neurological Outcome of Patients with Isolated Severe Traumatic Brain Injury: A Retrospective Cohort Study. Neurocritical Care.
https://doi.org/10.1007/s12028-023-01687-4
[20]  Blight, A.R. (1992) Macrophages and Inflammatory Damage in Spinal Cord Injury. Journal of Neurotrauma, 9, S83-S91.
[21]  Hampton, M.B., Kettle, A.J. and Winterbourn, C.C. (1998) Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 92, 3007-3017.
[22]  Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y.L. and Zheng, J.C. (2009) Inflammation Mediates Varying Effects in Neurogenesis: Relevance to the Pathogenesis of Brain Injury and Neurodegenerative Disorders. Journal of Neurochemistry, 108, 1343-1359.
https://doi.org/10.1111/j.1471-4159.2009.05886.x
[23]  Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X. and Choi, A.M.K. (2007) Mechanisms of Cell Death in Ox-idative Stress. Antioxidants & Redox Signaling, 9, 49-89.
https://doi.org/10.1089/ars.2007.9.49
[24]  Smith, J.A. (1994) Neutrophils, Host Defense, and Inflammation: A Double-Edged Sword. Journal of Leukocyte Biology, 56, 672-686.
https://doi.org/10.1002/jlb.56.6.672
[25]  Maxwell, W.L., Watt, C., Graham, D.I. and Gennarelli, T.A. (1993) Ultrastructural Evidence of Axonal Shearing as a Result of Lateral Acceleration of the Head in Non-Human Pri-mates. Acta Neuropathologica, 86, 136-144.
https://doi.org/10.1007/BF00334880
[26]  Brittain, M.K., et al. (2012) Delayed Calcium Dysregulation in Neurons Requires Both the NMDA Receptor and the Reverse Na+/Ca2+ Exchanger. Neurobiology of Disease, 46, 109-117.
https://pubmed.ncbi.nlm.nih.gov/22249110/
[27]  Garthwaite, G., Hajós, F. and Garthwaite, J. (1986) Ionic Re-quirements for Neurotoxic Effects of Excitatory Amino Acid Analogues in Rat Cerebellar Slices. Neuroscience, 18, 437-447.
https://doi.org/10.1016/0306-4522(86)90164-8
[28]  Van Beek, J.G.M., Mushkudiani, N.A., Steyerberg, E.W., Butcher, I., McHugh, G.S., Lu, J., Marmarou, A., Murray, G.D. and Maas, A.I.R. (2007) Prognostic Value of Admission Laboratory Parameters in Traumatic Brain Injury: Results from the IMPACT Study. Journal of Neurotrauma, 24, 315-328.
https://doi.org/10.1089/neu.2006.0034
[29]  Juratli, T.A., Zang, B., Litz, R.J., Sitoci, K.H., Aschen-brenner, U., Gottschlich, B., Daubner, D., Schackert, G. and Sobottka, S.B. (2014) Early Hemorrhagic Progression of Traumatic Brain Contusions: Frequency, Correlation with Coagulation Disorders, and Patient Outcome: A Prospective Study. Journal of Neurotrauma, 31, 1521-1527.
https://doi.org/10.1089/neu.2013.3241
[30]  Maegele, M., Sch?chl, H., Menovsky, T., Maréchal, H., Marklund, N., Buki, A. and Stanworth, S. (2017) Coagulopathy and Haemorrhagic Progression in Traumatic Brain Injury: Advances in Mechanisms, Diagnosis, and Management. The Lancet Neurology, 16, 630-647.
https://doi.org/10.1016/S1474-4422(17)30197-7
[31]  Folkerson, L.E., Sloan, D., Cotton, B.A., Holcomb, J.B., Tomasek, J.S. and Wade, C.E. (2015) Predicting Progressive Hemorrhagic Injury from Isolated Traumatic Brain Injury and Coagulation. Surgery, 158, 655-661.
https://doi.org/10.1016/j.surg.2015.02.029
[32]  White, C.L., Griffith, S. and Caron, J.L. (2009) Early Progression of Traumatic Cerebral Contusions: Characterization and Risk Factors. The Journal of Trauma: Injury, Infection, and Critical Care, 67, 508-515.
https://doi.org/10.1097/TA.0b013e3181b2519f
[33]  Yuan, Q., Sun, Y.R., Wu, X., Yu, J., Li, Z.Q., Du, Z.Y., Wu, X.H., Zhou, L.F. and Hu, J. (2016) Coagulopathy in Traumatic Brain Injury and Its Correlation with Progressive Hem-orrhagic Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 33, 1279-1291.
https://doi.org/10.1089/neu.2015.4205
[34]  Chang, E.F., Meeker, M. and Holland, M.C. (2006) Acute Traumatic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neurosurgery, 58, 647-656.
https://doi.org/10.1227/01.NEU.0000197101.68538.E6
[35]  Inoue, Y., Miyashita, F., Toyoda, K. and Minematsu, K. (2013) Low Serum Calcium Levels Contribute to Larger Hematoma Volume in Acute Intracerebral Hemorrhage. Stroke, 44, 2004-2006.
https://doi.org/10.1161/STROKEAHA.113.001187
[36]  Peacock, M. (2010) Calcium Metabolism in Health and Disease. Clinical Journal of the American Society of Nephrology, 5, S23-S30.
https://pubmed.ncbi.nlm.nih.gov/20089499/
[37]  Veldurthy, V., et al. (2016) Vitamin D, Calcium Homeostasis and Aging. Bone Research, 4, Article ID: 16041.
https://pubmed.ncbi.nlm.nih.gov/27790378/
[38]  De Robertis, E., Kozek-Langenecker, S.A., Tufano, R., Romano, G.M., Piazza, O. and Zito Marinosci, G. (2015) Coagulopathy Induced by Acidosis, Hypothermia and Hypocalcaemia in Severe Bleeding. Minerva Anestesiologica, 81, 65-75.
[39]  Wolberg, A.S. (2007) Thrombin Generation and Fibrin Clot Structure. Blood Reviews, 21, 131-142.
https://doi.org/10.1016/j.blre.2006.11.001
[40]  Nesbitt, W.S., Giuliano, S., Kulkarni, S., Dopheide, S.M., Harper, I.S. and Jackson, S.P. (2003) Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth. Journal of Cell Biology, 160, 1151-1161.
https://doi.org/10.1083/jcb.200207119
[41]  Jackson, S.P., Nesbitt, W.S. and Kulkarni, S. (2003) Signaling Events Underlying Thrombus Formation. Journal of Thrombosis and Haemostasis, 1, 1602-1612.
https://pubmed.ncbi.nlm.nih.gov/12871297/
[42]  Qi, H.Y., et al. (2016) Anti-Platelet Activity of Panaxatriol Sapo-nins Is Mediated by Suppression of Intracellular Calcium Mobilization and ERK2/p38 Activation. BMC Complementary and Alternative Medicine, 16, Article 174.
https://pubmed.ncbi.nlm.nih.gov/27277000/
[43]  Rumbaut, R.E. and Thiagarajan, P. (2010) Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. Morgan & Claypool Life Sciences, San Rafael. http://www.ncbi.nlm.nih.gov/books/NBK53450/
https://doi.org/10.4199/C00007ED1V01Y201002ISP004
[44]  Gryglewski, R.J. (2008) Prostacyclin among Pros-tanoids. Pharmacological Reports, 60, 3-11.
https://pubmed.ncbi.nlm.nih.gov/18276980/
[45]  Choi, D.W. (1985) Glutamate Neurotoxicity in Cortical Cell Cul-ture Is Calcium Dependent. Neuroscience Letters, 58, 293-297.
https://pubmed.ncbi.nlm.nih.gov/2413399/
[46]  Han, R.Z., Hu, J.J., Weng, Y.C., Li, D.F. and Huang, Y. (2009) NMDA Receptor Antagonist MK-801 Reduces Neuronal Damage and Preserves Learning and Memory in a Rat Model of Traumatic Brain Injury. Neuroscience Bulletin, 25, 367-375.
https://pubmed.ncbi.nlm.nih.gov/19927173/
[47]  S?nmez, A., et al. (2015) Europrotective Effects of MK-801 against Traumatic Brain Injury in Immature Rats.
https://pubmed.ncbi.nlm.nih.gov/?term=europrotective+effects+of++MK%E2%80%91801 +against+traumatic+brain+injury+in+immature+rats
[48]  Bailey, I., et al. (1991) A Trial of the Effect of Nimodipine on Outcome after Head Injury. Acta Neurochirurgica, 110, 97-105.
https://pubmed.ncbi.nlm.nih.gov/1927616/
[49]  Murray, G.D., Teas-dale, G.M. and Schmitz, H. (1996) Nimodipine in Traumatic Subarachnoid Haemorrhage: A Re- Analysis of the HIT I and HIT II Trials. Acta Neurochirurgica, 138, 1163-1167.
https://pubmed.ncbi.nlm.nih.gov/8955434/
[50]  Langham, J., Goldfrad, C., Teasdale, G., Shaw, D. and Rowan, K. (2003) Calcium Channel Blockers for Acute Traumatic Brain Injury. Cochrane Database of Systematic Reviews, 4, CD000565.
https://doi.org/10.1002/14651858.CD000565

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133