全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ο-算子的二次上同调
Secondary Cohomology of Ο-Operators

DOI: 10.12677/AAM.2023.129386, PP. 3945-3953

Keywords: 二次上同调,Ο-算子
Secondary Cohomology
, Ο-Oparators

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要介绍三元组(A,B,ε)上的关于双A-模M的Ο-算子的二次上同调,并进一步利用Ο-算子给出M的结合代数结构及对应三元组(M,B,ε)的二次Hochschild上同调与Ο-算子二次Hochschild上同调之间的关系。
This paper mainly introduced the secondary cohomology of Ο-operators on (A,B,ε) with respect to the A-bimodule M. The Ο-operator is further used to derive the associative algebraic structure on M and the relation between the secondary Hochschild cohomology of corresponding triple (M,B,ε) and the secondary Hochschild cohomology of Ο-operators.

References

[1]  Hochschild, G. (1945) On the Cohomology Groups of an Associative Algebra. Annals of Mathematics, 46, 58-67.
https://doi.org/10.2307/1969145
[2]  Loday, J.-L. (2013) Cyclic Homology. Springer Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-21739-9
[3]  Staic, M.D. (2015) Secondary Hochschild Cohomology. Algebra Represent Theory, 19, 47-56.
https://doi.org/10.1007/s10468-015-9561-8
[4]  Staic, M.D. and Stancu, A. (2015) Operations on the Secondary Hochschild Cohomology. Homology, Homotopy and Applications, 17, 129-146.
https://doi.org/10.4310/HHA.2015.v17.n1.a6
[5]  Corrigan-Salter, B.R. and Staic, M.D. (2016) Higher-Order and Secondary Hochschild Cohomology. Comptes Rendus Mathematique, 11, 1049-1054.
https://doi.org/10.1016/j.crma.2016.10.013
[6]  Laubacher, J., Staic, M.D. and Stancu, A. (2018) Bar Simplicial modules and Secondary Cyclic (Co)homology. Journal of Noncommutative Geometry, 12, 865-887.
https://doi.org/10.4171/JNCG/293
[7]  Das, A. (2020) Deformations of Associative Rota-Baxter operators. Jour-nal of Algebra, 560, 144-180.
https://doi.org/10.1016/j.jalgebra.2020.05.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133