|
Ο-算子的二次上同调
|
Abstract:
本文主要介绍三元组(A,B,ε)上的关于双A-模M的Ο-算子的二次上同调,并进一步利用Ο-算子给出M的结合代数结构及对应三元组(M,B,ε)的二次Hochschild上同调与Ο-算子二次Hochschild上同调之间的关系。
This paper mainly introduced the secondary cohomology of Ο-operators on (A,B,ε) with respect to the A-bimodule M. The Ο-operator is further used to derive the associative algebraic structure on M and the relation between the secondary Hochschild cohomology of corresponding triple (M,B,ε) and the secondary Hochschild cohomology of Ο-operators.
[1] | Hochschild, G. (1945) On the Cohomology Groups of an Associative Algebra. Annals of Mathematics, 46, 58-67.
https://doi.org/10.2307/1969145 |
[2] | Loday, J.-L. (2013) Cyclic Homology. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21739-9 |
[3] | Staic, M.D. (2015) Secondary Hochschild Cohomology. Algebra Represent Theory, 19, 47-56.
https://doi.org/10.1007/s10468-015-9561-8 |
[4] | Staic, M.D. and Stancu, A. (2015) Operations on the Secondary Hochschild Cohomology. Homology, Homotopy and Applications, 17, 129-146. https://doi.org/10.4310/HHA.2015.v17.n1.a6 |
[5] | Corrigan-Salter, B.R. and Staic, M.D. (2016) Higher-Order and Secondary Hochschild Cohomology. Comptes Rendus Mathematique, 11, 1049-1054. https://doi.org/10.1016/j.crma.2016.10.013 |
[6] | Laubacher, J., Staic, M.D. and Stancu, A. (2018) Bar Simplicial modules and Secondary Cyclic (Co)homology. Journal of Noncommutative Geometry, 12, 865-887. https://doi.org/10.4171/JNCG/293 |
[7] | Das, A. (2020) Deformations of Associative Rota-Baxter operators. Jour-nal of Algebra, 560, 144-180.
https://doi.org/10.1016/j.jalgebra.2020.05.016 |