全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于S-V-PSAL混合模型的股票预测研究
Research on Stock Prediction Based on S-V-PSAL Mixed Model

DOI: 10.12677/AAM.2023.129384, PP. 3920-39232

Keywords: 股票价格预测,奇异谱分析,变分模态分解,支持向量回归,长短期记忆网络
Stock Price Prediction
, Singular Spectrum Analysis, Variational Mode Decomposition, Support Vec-tor Regression, Long Short-Term Memory

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于股票价格数据具有非平稳、非线性、复杂性高等特点,欲对其进行预测就存在一定的困难,提出了一种基于S-V-PSAL混合模型的预测方法。首先使用奇异谱分析(SSA)对股票历史数据进行一次分解,得到趋势项和噪声项。对于较平稳的趋势项,使用支持向量回归(SVR)模型进行预测;对复杂度依旧很高的噪声项序列,利用变分模态分解(VMD)再次分解,并使用长短期记忆网络和注意力机制(ALSTM)对得到的模态函数(IMFs)和残差序列(res)进行预测。最后将各预测结果重构得到最终结果。文中使用亿纬锂能股票的历史数据对提出的模型进行检验,通过三种评价指标,可以表明提出的模型比其他对比模型得到的预测效果更好,有更高的准确性。
It is difficult to forecast stock price data because of its non-stationary, nonlinear and complex char-acteristics. A prediction method based on S-V-PSAL mixed model is proposed. First, the historical stock data is decomposed by singular spectrum analysis (SSA), and the trend term and noise term are obtained. For stable trend items, support vector regression (SVR) model is used to predict them. The noise sequence is decomposed again by variational mode decomposition (VMD), and the modal function (IMFs) and residual sequence (res) are predicted by long short-term memory network and attention mechanism (ALSTM). Finally, the forecast results are reconstructed to get the final result. In this paper, the historical data of EVE Energy stock is used to test the proposed model. Through three evaluation indexes, it can be shown that the proposed model has better prediction effect and higher accuracy than other comparison models.

References

[1]  刘遵雄, 周天清. 基于奇异谱分析的GRNN模型在金融时间序列中的应用[J]. 华东交通大学学报, 2011, 28(2): 29-34.
[2]  Cao, J., Li, Z. and Li, J. (2019) Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications, 519, 127-139.
https://doi.org/10.1016/j.physa.2018.11.061
[3]  Niu, H.L. and Xu, K.L. (2020) A Hybrid Model Combining Var-iational Mode Decomposition and an Attention-GRU Network for Stock Price Index Forecasting. Mathematical Biosci-ences and Engineering, 17, 7151-7166.
https://doi.org/10.3934/mbe.2020367
[4]  程文辉, 车文刚. 基于二次分解与LSTM的金融时间序列预测算法研究[J]. 重庆邮电大学学报(自然科学版), 2022, 34(4): 638-645.
[5]  Hassani, H. (2007) Singular Spectrum Analy-sis: Methodology and Comparison. Journal of Data Science, 5, 239-257.
https://doi.org/10.6339/JDS.2007.05(2).396
[6]  张一, 惠晓峰. 基于奇异谱分析的汇率预测研究[J]. 统计与决策, 2012(6): 29-31.
[7]  Dragomiretskiy, K. and Zosso, D. (2014) Variational Mode Decomposition. IEEE Transac-tions on Signal Processing, 62, 531-544.
https://doi.org/10.1109/TSP.2013.2288675
[8]  王秀杰, 王玲, 滕振敏, 等. 基于VMD-PSO-LSTM模型的日径流多步预测研究[J/OL]. 水利水运工程学报: 1-10. http://kns.cnki.net/kcms/detail/32.1613.TV.20230313.1130.002.html, 2023-09-06.
[9]  李坤, 谭梦羽. 基于小波支持向量机回归的股票预测[J]. 统计与决策, 2014(6): 32-36.
[10]  付占局. 基于文本情感分析及GA-SVR模型的股价预测研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2021.
[11]  邓德军, 徐洪珍, 韦诗玥. E-V-ALSTM模型的股价预测[J]. 计算机工程与应用, 2023, 59(6): 101-112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133