|
基于免疫克隆的蚁狮算法及其桁架优化
|
Abstract:
蚁狮优化算法具有较好的搜索和开发能力,但是在寻优后期精英蚁狮的影响权重减小,导致算法收敛速度较慢且易于陷入局优,对此提出一种免疫克隆的蚁狮优化算法。前期使用反向学习策略初始化蚂蚁种群,提高种群多样性;在精英蚁狮更新中加入柯西变异算子,提高算法后期的开发能力;最后结合免疫克隆选择算法对蚁狮进行克隆变异,改变蚁狮的位置和适应度值,进一步提高算法全局寻优能力以及收敛精度。通过10个测试函数、0~1背包来评估算法的寻优能力,并运用到桁架结构的尺寸、布局优化问题中,通过受力效果图发现优化效果良好,验证了ICALO应用于组合优化问题中收敛速度更快、精度更高的特点,为结构优化提供了一种新的方法。
Antlion optimization algorithm has good search and development capabilities, but the influence weight of elite ant lions is reduced in the later stage of optimization, which leads to slower algorithm convergence and easy fall into local optimization. For this purpose, an antlion optimization algo-rithm based on immune cloning was proposed. In the early stage, the reverse learning strategy was used to initialize the ant population. The Cauchy mutation operator was added to the elite antlion update to improve the later development ability of the algorithm; finally, the antlion was cloned and mutated with the immune clone selection algorithm to change the position and fitness value of the antlion, and further improved the algorithm’s global optimization ability and convergence ac-curacy. 10 test functions and 0~1 backpack were used to evaluate the optimization ability of the al-gorithm, and applied to the size and layout optimization problems of the truss structure. The opti-mization effect was found to be good through the force effect diagram. It is verified that ICALO is ap-plied to combinatorial optimization problems with faster convergence speed and higher accuracy. It provides a new method for structural optimization.
[1] | 李雪岩, 李学伟, 李静. 基于混沌集群智能优化算法的多目标粗糙集属性约减[J]. 运筹与管理, 2020, 29(12): 30-37. |
[2] | 叶小岭, 姚锦松, 熊雄, 巩灿灿, 金瞳宇. 基于余弦相似度和移动曲面拟合的地面气温质量控制算法[J]. 中国科技论文, 2020, 15(5): 577-584+592. |
[3] | Feo, G., Sharma, J. and Cunningham, S. (2020) Integrating Fiber Optic Data in Numerical Reservoir Simulation Using Intelligent Optimization Workflow. Sensors, 20, 506-524. https://doi.org/10.3390/s20113075 |
[4] | Ma, Z.T., Yuan, X.F., Han, S., Sun, D.Y. and Ma, Y. (2019) Improved Chaotic Particle Swarm Optimization Algorithm with More Symmetric Distribution for Numerical Function Optimization. Symmetry, 11, 106-110.
https://doi.org/10.3390/sym11070876 |
[5] | 赵克新, 黄长强, 王渊, 等. 基于混沌蚁狮算法的无人机航迹规划[J]. 飞行力学, 2018, 36(1): 93-96. |
[6] | 简春菲, 王晓峰, 王司. 基于ALO-SVM的模拟电路故障诊断研究[J]. 自动化技术与应用, 2019, 38(12): 113-118. |
[7] | Kilic, H., Yüzge?, U., et al. (2019) Improved Antlion Optimization Al-gorithm via Tournament Selection and Its Application to Parallel Machine Scheduling. Computers & Industrial Engi-neering, 132, 166-186.
https://doi.org/10.1016/j.cie.2019.04.029 |
[8] | 李宗妮, 吴伟民, 林志毅. 一种采用改进蚁狮优化算法的图像增强方法[J]. 计算机应用研究, 2018, 35(4): 1258-1260+1265. |
[9] | 吴伟民, 张晶晶, 林志毅, 等. 双重反馈机制的蚁狮算法[J]. 计算机工程与应用, 2017, 53(12): 31-35, 75. |
[10] | 赵小国, 刘丁, 景坤雷. 融合改进蚁狮算法和T-S模糊模型的噪声非线性系统辨识[J]. 控制与决策, 2019, 34(4): 759-766. |
[11] | 王亚东, 石全, 尤志锋, 等. 差分准对立学习多目标蚁狮算法[J]. 计算机工程与应用, 2020, 56(13): 156-163. |
[12] | 肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177-2186. |
[13] | Tharwat, A. and Hassanien, A.E. (2018) Chaotic Antlion Algorithm for Parameter Optimization of Support Vector Machine. Applied Intelligence, 48, 670-686. https://doi.org/10.1007/s10489-017-0994-0 |
[14] | 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配[J]. 物理学报, 2011, 60(7): 894-901. |
[15] | Ryu, N., Min, S., et al. (2019) Multiobjective Optimization with an Adaptive Weight Determination Scheme Using the Concept of Hyperplane. International Journal for Numerical Methods in Engineering, 118, 303-319.
https://doi.org/10.1002/nme.6013 |
[16] | Calsina, à., Cuadrado, S., Desvillettes, L. and Raoul, G. (2016) Asymptotic Profile in Selection-Mutation Equations: Gauss versus Cauchy Distributions. Journal of Mathematical Analysis and Ap-plications, 444, 1515-1541.
https://doi.org/10.1016/j.jmaa.2016.07.028 |
[17] | 刘静秋, 杜文莉, 张飞. 基于粒子群算法的函数复杂度分类法[J]. 控制工程, 2020, 27(8): 1337-1345. |
[18] | 康俊涛, 邹立, 曹鸿猷, 张亚州. 基于樽海鞘群算法的桁架结构优化设计[J]. 空间结构, 2020, 26(3): 51-58+83. |
[19] | Subhashini, K.R., Satapathy, J.K., et al. (2017) Development of an Enhanced Ant Lion Optimization Algorithm and Its Application in Antenna Array Synthesis. Applied Soft Computing, 59, 153-173.
https://doi.org/10.1016/j.asoc.2017.05.007 |
[20] | 李彦苍, 吴悦. 基于高斯变异的蚁狮算法及其在组合优化中的应用[J]. 中国科技论文, 2022, 17(3): 295-304. |
[21] | Chen, H., Li, W. and Yang, X. (2020) A Whale Optimization Algorithm with Chaos Mechanism Based on Quasi-Opposition for Global Optimization Problems. Expert Systems with Applications, 158, Article ID: 113612.
https://doi.org/10.1016/j.eswa.2020.113612 |
[22] | 张凤斌, 王超, 杨泽. 基于疫苗算子和柯西变异的克隆选择算法改进[J]. 计算机工程与应用, 2017, 53(1): 118-123. |
[23] | 方鹏飞, 黄陆光, 娄苗苗, 蒋昆. 基于二维Logistic混沌映射与DNA序列运算的图像加密算法[J]. 中国科技论文, 2021, 16(3): 247-252. |
[24] | Valandar, M.Y., Ayubi, P. and Barani, M.J. (2017) A New Transform Domain Steganography Based on Modified Logistic Chaotic Map for Color Images. Journal of Information Security and Applications, 34, 142-151.
https://doi.org/10.1016/j.jisa.2017.04.004 |
[25] | 陆玉佳, 倪志伟, 朱旭辉, 许力分, 伍章俊. 基于MapReduce改进离散型萤火虫算法和多重分形的属性约简方法[J]. 模式识别与人工智能, 2018, 31(6): 537-547. |
[26] | Basu, M. (2016) Improved Particle Swarm Optimization for Global Optimization of Unimodal and Multimodal Functions. Journal of the Institution of Engineers (India): Series B, 97, 525-535. https://doi.org/10.1007/s40031-015-0204-6 |
[27] | 石晟, 杜东升, 王曙光, 李威威. 基于高斯函数的完全非平稳地震动多峰模型及其应用[J]. 建筑结构学报, 2020, 41(5): 198-206. |
[28] | Moradi, N., Kayvanfar, V. and Rafiee, M. (2021) An Efficient Population-Based Simulated An-nealing Algorithm for 0-1 Knapsack Problem. Engineering with Computers, 96, 1245-1365. https://doi.org/10.1007/s00366-020-01240-3 |
[29] | Sun, W.Z., Zhang, M., Wang, J.S., Guo, S.S., Wang, M. and Hao, W.K. (2021) Binary Particle Swarm Optimization Algorithm Based on Z-Shaped Probability Transfer Function to Solve 0-1 Knapsack Problem. IAENG International Journal of Computer Science, 48, 236-246. |
[30] | 王娜, 向凤红, 毛剑琳. 改进的自适应遗传算法求解0/1背包问题[J]. 计算机应用, 2012, 32(6): 1682-1684. |