全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解双曲守恒律方程的MUSCL-Hancock熵相容格式
MUSCL-Hancock Entropy Consistent Scheme for Solving Hyperbolic Conservation Laws

DOI: 10.12677/AAM.2023.129382, PP. 3886-3898

Keywords: 双曲守恒律方程,熵相容格式,MUSCL-Hancock方法,高分辨率
Hyperbolic Conservation Laws
, Entropy Consistent Scheme, MUSCL-Hancock Method, High Resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于MUSCL-Hancock方法求解双曲守恒律方程的熵相容格式(EC-MHM格式),新格式在空间上利用MUSCL-Hancock方法对数据进行重构,并对重构后的斜率进行修正,得到高分辨率的熵相容通量;在时间上,利用双曲守恒律方程的差分形式更新下一时刻的值,更新下一时刻变量值时只需计算一次数值通量,从而提高了格式的计算效率;最后对不同的双曲守恒律方程进行数值模拟,结果表明,EC-MHM格式具有无振荡、高分辨率、高精度等良好特性。
In this paper, an entropy consistent scheme (EC-MHM scheme) based on the MUSCL-Hancock meth-od for hyperbolic conservation laws is proposed. The new scheme uses the MUSCL-Hancock method to reconstruct the data spatially, and corrects the slope after the reconstruction to obtain a high-resolution entropy consistent flux. The value of the new time moment is updated by conserva-tive difference scheme of the hyperbolic conservation laws, and the numerical flux only needs to be calculated once when the variable value of the next moment is updated, which improves the com-putational efficiency of the scheme. Different hyperbolic conservation laws are numerically solved, and the numerical results show that the EC-MHM scheme has good characteristics such as non-oscillation, high resolution, and robustness.

References

[1]  Lax, P.D. (1954) Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation. Communica-tions on Pure & Applied Mathematics, 7, 159-193.
https://doi.org/10.1002/cpa.3160070112
[2]  Lax, P.D. (1973) Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Ap-plied Mathematics, University City, 1-48.
https://doi.org/10.1137/1.9781611970562.ch1
[3]  Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws. I. Mathematics of Computation, 49, 91-103.
https://doi.org/10.1090/S0025-5718-1987-0890255-3
[4]  Tadmor, E. (2003) Entropy Stability Theory for Difference Approximations of Nonlinear Conservation Laws and Related Time-Dependent Problems. Acta Numerica, 12, 451-512.
https://doi.org/10.1017/S0962492902000156
[5]  Tadmor, E. and Zhong, W. (2006) Entropy Stable Approximations of Navier-Stokes Equations with No Artificial Numerical Viscosity. Journal of Hyperbolic Differential Equations, 3, 529-559.
https://doi.org/10.1142/S0219891606000896
[6]  Tadmor, E. and Zhong, W. (2008) Energy-Preserving and Stable Approximations for the Two-Dimensional Shallow Water Equations. Springer, Berlin.
https://doi.org/10.1007/978-3-540-68850-1_4
[7]  Roe, P.L. (2006) Affordable, Entropy-Consistent Euler Flux Functions. The 11th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Lyon, 17-21 July 2006, 9-15.
[8]  Ismail, F. and Roe, P.L. (2009) Affordable, Entropy-Consistent Euler Flux Functions II: Entropy Production at Shocks. Journal of Computational Physics, 228, 5410-5436.
https://doi.org/10.1016/j.jcp.2009.04.021
[9]  Toro, E.F. (2009) Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin.
https://doi.org/10.1007/b79761
[10]  任璇. 基于斜率限制器的高分辨率熵相容格式研究[D]: [硕士学位论文]. 西安: 长安大学, 2021.
[11]  沈亚玲, 封建湖, 郑素佩, 等. 一种基于新型斜率限制器的理想磁流体方程的高分辨率熵相容格式[J]. 计算物理, 2022, 39(3): 297-308.
[12]  Barth, T.J. (1999) Numerical Methods for Gas Dynamic Systems on Unstructured Meshes. Springer, Berlin, 195-285.
https://doi.org/10.1007/978-3-642-58535-7_5
[13]  Fjordholm, U.S., Mishra, S. and Tadmor, E. (2009) Energy Preserving and Energy Stable Schemes for the Shallow Water Equations. In: Cucker, F., et al., Eds., Foundations of Computational Mathematics, Hong Kong 2008, Cambridge University Press, Cambridge, 93-139.
https://doi.org/10.1017/CBO9781139107068.005
[14]  Shu, C.W. and Osher, S. (1988) Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. Journal of Computational Physics, 77, 439-471.
https://doi.org/10.1016/0021-9991(88)90177-5
[15]  Shu, C.W. and Osher, S. (1989) Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II. Journal of Computational Physics, 83, 32-78.
https://doi.org/10.1016/0021-9991(89)90222-2
[16]  任炯, 封建湖, 刘友琼, 等. 求解双曲守恒律方程的高分辨率熵相容格式[J]. 计算物理, 2014, 31(5): 539-551.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133