全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(x,u,v)-依赖噪声的离散时间平均场随机H2/H控制
Discrete-Time Mean-Field Stochastic H2/H Control with (x,u,v)-Dependent Noise

DOI: 10.12677/AAM.2023.129380, PP. 3860-3871

Keywords: 离散时间系统,H2/H控制,平均场
Discrete-Time Systems
, H2/H Control, Mean-Field

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了一类(x,u,v)(状态,输入,扰动)-依赖噪声的离散时间平均场随机系统的有限时域混合H2/H控制问题。首先,给出了已有的平均场随机有界实引理(SBRL);其次,呈现了离散时间平均场随机线性二次(LQ)最优控制问题可解的充分条件。最后,基于SBRL和LQ最优控制的结果,通过耦合矩阵差分方程的可解性得到了离散时间平均场随机H2/H控制存在的充分必要条件,延伸了之前的结果。
This paper is concerned with the finite horizon mixed H2/H control problem for a class of dis-crete-time mean-field stochastic systems with (x,u,v) -dependent noise. Firstly, the existing mean-field stochastic bounded real lemma (SBRL) is given. Then, we presented a sufficient condi-tion for the solvability of discrete-time mean-field stochastic linear quadratic (LQ) optimal control problem for the considered system. Finally, based on the results of SBRL and LQ optimal control, a necessary and sufficient condition is obtained for the existence of discrete-time mean-field stochas-tic H2/H control via the coupled matrix difference equations, which extends the previous results.

References

[1]  Limebeer, D.J.N., Anderson, B.D.O. and Hendel, B. (1994) A Nash Game Approach to Mixed H2/H∞ Control. Auto-matic Control. IEEE Transactions on Automatic Control, 39, 69-82.
https://doi.org/10.1109/9.273340
[2]  Khargonekar, P.P. and Rotea, M.A. (1991) Mixed H2/H∞ Control: A Con-vex Optimization Approach. IEEE Transactions on Automatic Control, 36, 824-837.
https://doi.org/10.1109/9.85062
[3]  Chen, B.-S., Tseng, C.-S. and Uang, H.-J. (2000) Mixed H2/H∞ Fuzzy Out-put Feedback Control Design for Nonlinear Dynamic Systems: An LMI Approach. IEEE Transactions on Fuzzy Sys-tems, 8, 249-265.
https://doi.org/10.1109/91.855915
[4]  Zhang, W.H., Huang, Y.L. and Zhang, H.S. (2007) Stochastic H2/H∞ Con-trol for Discrete-Time Systems with State and Disturbance Dependent Noise. Automatica, 43, 513-521.
https://doi.org/10.1016/j.automatica.2006.09.015
[5]  Chen, B.-S. and Zhang, W.H. (2004) Stochastic H2/H∞ Con-trol with State-Dependent Noise. IEEE Transactions on Automatic Control, 49, 45-57.
https://doi.org/10.1109/TAC.2003.821400
[6]  Huang, Y., Zhang, W. and Feng, G. (2008) Infinite Horizon H2/H∞ Control for Stochastic Systems with Markovian Jumps. Automatica, 44, 857-863.
https://doi.org/10.1016/j.automatica.2007.07.001
[7]  Zhang, W. and Feng, G. (2008) Nonlinear Stochastic H2/H∞ Control with -Dependent Noise: Infinite Horizon Case. IEEE Transactions on Automatic Control, 53, 1323-1328.
https://doi.org/10.1109/TAC.2008.921024
[8]  Hou, T., Zhang, W. and Ma, H. (2008) Robust H2/H∞ Control for Discrete-Time Stochastic Systems with Markovian Jumps and Multiplicative Noise: Finite Horizon Case. 2008 27th Chinese Control Conference, Kunming, 16-18 July 2008, 754-758.
https://doi.org/10.1109/CHICC.2008.4605014
[9]  Li, X., Wang, W., Xu, J. and Zhang, H. (2018) Solution to Mixed H2/H∞ Control for Discrete-Time Systems with -Dependent Noise. International Journal of Control Au-tomation & Systems, 17, 273-285.
https://doi.org/10.1007/s12555-018-0208-5
[10]  Ma, L., Zhang, T., Zhang, W. and Chen, B.-S. (2015) Finite Horizon Mean-Field Stochastic H2/H∞ Control for Continuous-Time Systems with -Dependent Noise. Journal of the Franklin Institute, 352, 5393-5414.
https://doi.org/10.1016/j.jfranklin.2015.09.011
[11]  Zhang, W., Ma, L. and Zhang, T. (2017) Discrete-Time Mean-Field Stochastic H2/H∞ Control. Journal of Systems Science & Complexity, 30, 765-781.
https://doi.org/10.1007/s11424-017-5010-6
[12]  Yong, J. (2013) Linear-Quadratic Optimal Control Problems for Mean-Field Stochastic Differential Equations. SIAM Journal on Control and Optimization, 51, 2809-2838.
https://doi.org/10.1137/120892477
[13]  Huang, J., Li, X. and Yong, J. (2015) A Linear-Quadratic Optimal Control Problem for Mean-Field Stochastic Differential Equations in Infinite Horizon. Mathematical Control & Related Fields, 5, 97-139.
https://doi.org/10.3934/mcrf.2015.5.97
[14]  Elliott, R., Li, X. and Ni, Y.-H. (2013) Discrete Time Mean-Field Stochastic Linear-Quadratic Optimal Control Problems. Automatica, 49, 3222-3233.
https://doi.org/10.1016/j.automatica.2013.08.017
[15]  Ni, Y.-H., Elliott, R. and Li, X. (2015) Discrete-Time Mean-Field Stochastic Linear-Quadratic Optimal Control Problems, II: Infinite Horizon Case. Automatica, 57, 65-77.
https://doi.org/10.1016/j.automatica.2015.04.002
[16]  Ni, Y.-H., Li, X. and Zhang, J.-F. (2016) Mean-Field Sto-chastic Linear-Quadratic Optimal Control with Markov Jump Parameters. Systems and Control Letters, 93, 69-76.
https://doi.org/10.1016/j.sysconle.2016.04.002
[17]  Ma, L., Zhang, T., and Zhang, W. (2016) H∞ Control for Con-tinuous-Time Mean-Field Stochastic Systems. Asian Journal of Control, 18, 1630-1640.
https://doi.org/10.1002/asjc.1290
[18]  Ma, L. and Zhang, W. (2015) Output Feedback H∞ Control for Dis-crete-Time Mean-field Stochastic Systems. Asian Journal of Control, 17, 2241-2251.
https://doi.org/10.1002/asjc.1128
[19]  Ma, H. (2022) A Bounded Real Lemma for Discrete-Time Linear Mean-Field Stochastic Systems. In: Jia, Y., Zhang, W., Fu, Y. and Zhao, S., Eds., Proceedings of 2022 Chinese Intelli-gent Systems Conference. CISC 2022. Lecture Notes in Electrical Engineering, Vol. 950, Springer, Singapore, 881-890.
https://doi.org/10.1007/978-981-19-6203-5_88
[20]  Song, T. and Liu, B. (2021) Discrete-Time Mean-Field Sto-chastic Linear-Quadratic Optimal Control Problem with Finite Horizon. Asian Journal of Control, 23, 979-989.
https://doi.org/10.1002/asjc.2306

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133