全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有无限马尔可夫跳跃的离散系统LQ纳什博弈
LQ Nash Games for Discrete Systems with Infinite Markov Jumps

DOI: 10.12677/AAM.2023.129379, PP. 3851-3859

Keywords: 耦合广义代数黎卡蒂方程,无限马尔可夫跳跃,纳什博弈,随机微分方程,强可检测性
Coupled Generalized Algebraic Riccati Equation
, Infinite Markovian Jumps, Nash Games, Stochastic Differential Equations, Strong Detectability

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究具有无限马尔可夫跳跃和(x,u,v)-独立噪声的随机微分方程(SDEs)的无限时域线性二次(LQ)纳什博弈问题。基于矩阵伪逆性质,算子理论,状态稳定性性质,给出不定LQ控制的可达性与ICGAREs解的存在性之间的等价条件。在此基础上,在EMSS-C和强可检测性条件下,确定了无限马尔可夫跳跃系统的无限时域纳什对策。
In this paper, we consider infinite horizon linear-quadratic (LQ) Nash games for stochastic differen-tial equations (SDEs) with infinite Markovian jumps and (x,u,v) -dependent noise. Based on the pseudo-inverse property of matrix, operator theory and state stability property, the equivalent conditions between the reachability of indefinite LQ control and the existence of ICGAREs solution are given. On this basis, the infinite-domain Nash games for infinite Markov jump systems are de-termined under the conditions of EMSS-C and strong detectability.

References

[1]  Dockner, E.J., J?rgensen, N.V. and Long, N.V. (2000) Differential Games in Economics and Management Science. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511805127
[2]  Chen, B.S., Tseng, C.S. and Uang, H.J. (2002) Fuzzy Differential Games for Nonlinear Stochastic Systems: Suboptimal Approach. IEEE Transactions on Fuzzy Systems, 10, 222-233.
https://doi.org/10.1109/91.995123
[3]  Wang, G. and Yu, Z. (2010) A Pontryagin’s Maximum Principle for Non-Zero Sum Differential Games of BSDEs with Applications. IEEE Transac-tions on Automatic Control, 55, 1742-1747.
https://doi.org/10.1109/TAC.2010.2048052
[4]  Wang, G. and Yu, Z. (2012) A Partial Information Non-Zero Sum Differential Game of Backward Stochastic Differential Equations with Ap-plications. Auto, 48, 342-352.
https://doi.org/10.1016/j.automatica.2011.11.010
[5]  Mao, W., Deng, F. and Wan, A. (2016) Robust H2∕H∞ Global Linearization Filter Design for Nonlinear Stochastic Time-Varying Delay Systems. Sci-ence China-Information Sciences, 59, Article No. 32204.
https://doi.org/10.1007/s11432-015-5386-7
[6]  Lin, Y., Zhang, T. and Zhang, W. (2018) Infinite Horizon Linear Quadratic Pareto Game of the Stochastic Singular Systems. Journal of the Franklin Institute, 355, 4436-4452.
https://doi.org/10.1016/j.jfranklin.2018.04.025
[7]  Ding, X., Li, H. and Alsaadi, F.E. (2020) Regulation of Game Result for n-Person Random Evolutionary Boolean Games. Asian Journal of Control, 22, 2353-2362.
[8]  Basar, T. and Olsder, G.J. (1999) Dynamic Noncooperative Game Theory. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611971132
[9]  Dragan, V. and Ivanov, I.G. (2017) Sufficient Conditions for Nash Equilibrium Point in the Linear Quadratic Game for Markov Jump Positive Systems. IET Control Theory & Applications, 11, 2658-2667.
https://doi.org/10.1049/iet-cta.2016.1317
[10]  Hou, T., Zhang, W. and Ma, H. (2013) A Game-Based Control De-sign for Discrete-Time Markov Jump Systems with Multiplicative Noise. IET Control Theory & Applications, 7, 773-783.
https://doi.org/10.1049/iet-cta.2012.1018
[11]  Liu, Y. and Hou, T. (2020) Infinite Horizon LQ Nash Games for SDEs with Infinite Jumps. Asian Journal of Control, 23, 2431-2443.
https://doi.org/10.1002/asjc.2371
[12]  Dragan, V., Morozan, T. and Stoica, A.M. (2013) Mathematical Methods in Robust Control of Linear Stochastic Systems. 2nd Edition, Springer, New York.
https://doi.org/10.1007/978-1-4614-8663-3
[13]  Liu, Y.Y., Hou, T. and Bai, X.Z. (2017) Infinite Horizon H2∕H∞ Optimal Control for Discrete-Time Infinite Markov Jump Systems with (x, u, v)-Dependent Noise. 2017 IEEE 36th Chi-nese Control Conference (CCC), Dalian, 26-28 July 2017, 1955-1960.
https://doi.org/10.23919/ChiCC.2017.8027640
[14]  Hou, T. and Ma, H. (2016) Exponential Stability for Dis-crete-Time Infinite Markov Jump Systems. IEEE Transactions on Automatic Control, 61, 4241-4246.
https://doi.org/10.1109/TAC.2015.2511306
[15]  Albert, A. (1969) Conditions for Positive and Nonnegative Defi-niteness in Terms of Pseudoinverses. SIAM Journal on Applied Mathematics, 17, 434-440.
https://doi.org/10.1137/0117041
[16]  Anderson, B.D.O. and Moore, J.B. (1989) Optimal Control: Linear Quadratic Methods. Prentice-Hall, Englewood Cliffs.
[17]  周海英, 张成科, 朱怀念. 离散Markov切换系统的随机Nash博弈及H2/H∞控制[J]. 控制工程, 2016, 23(6): 828-833.
[18]  Ungureanu, V.M. (2014) Optimal Control for Infinite Di-mensional Stochastic Differential Equations with Infinite Markov Jumps and Multiplicative Noise. Journal of Mathemat-ical Analysis and Applications, 417, 694-718.
https://doi.org/10.1016/j.jmaa.2014.03.052
[19]  Hou, T., Wang, J., Liu, Y., et al. (2017) Control for MJLS with Infinite Markov Chain. Mathematical Problems in Engineering, 2017, Article ID: 9038469.
https://doi.org/10.1155/2017/9038469

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133