全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

慢性阻塞性肺疾病并肌少症相关的研究进展
Research Progress of Chronic Obstructive Pulmonary Disease Associated with Sarcopenia

DOI: 10.12677/ACM.2023.1391979, PP. 14158-14165

Keywords: 慢性阻塞性肺疾病,肌少症,流行病学,发病机制,筛查诊断
Chronic Obstructive Pulmonary Disease
, Sarcopenia, Epidemiology, Pathogenesis, Screening and Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

慢性阻塞性肺疾病简称慢阻肺(COPD)是常见的慢性呼吸系统疾病之一,是一种复杂的、具有高度异质性的全身性疾病。肌少症是一种以骨骼肌质量下降和功能减退特点的退行性病变。慢性阻塞性肺疾病病人更易并发肌少症,能够加速慢阻肺疾病进程,增加致残率和死亡率。然而目前只能靠双能X线和BIA确诊,部分医院及社区不能普及,导致慢阻肺肌少症患者漏诊。因此,本文结合最新文献就慢性阻塞性肺疾病相关肌少症的流行病学、发病机制、筛查诊断予以综述。
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases. It is a complex systemic disease with high heterogeneity. Sarcopenia is a degenerative disease char-acterized by a decline in skeletal muscle mass and function. Patients with chronic obstructive pul-monary disease are more susceptible to sarcopenia, which can accelerate the disease process and increase disability and all-cause mortality. However, at present, the diagnosis can only be made by dual-energy X-ray and BIA, which can not be popularized in some hospitals and communities, re-sulting in missed diagnosis of COPD patients with sarcopenia. Therefore, the epidemiology, patho-genesis, screening and diagnosis of sarcopenia associated with chronic obstructive pulmonary dis-ease were reviewed in this paper.

References

[1]  Labaki, W.W. and Rosenberg, S.R. (2020) Chronic Obstructive Pulmonary Disease. Annals of Internal Medicine, 173, Itc17-Itc32.
https://doi.org/10.7326/AITC202008040
[2]  Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646.
https://doi.org/10.1016/S0140-6736(19)31138-9
[3]  Sayer, A.A. and Cruz-Jentoft, A. (2022) Sarcopenia Defi-nition, Diagnosis and Treatment: Consensus Is Growing. Age and Ageing, 51, Article ID: Afac220.
https://doi.org/10.1093/ageing/afac220
[4]  Tournadre, A., Vial, G., Capel, F., Soubrier, M. and Boirie, Y. (2019) Sarcopenia. Joint Bone Spine, 86, 309-314.
https://doi.org/10.1016/j.jbspin.2018.08.001
[5]  Zhang, L. and Sun, Y. (2021) Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease. Frontiers in Endocrinology, 12, Article 724911.
https://doi.org/10.3389/fendo.2021.724911
[6]  Bone, A.E., Hepgul, N., Kon, S. and Maddocks, M. (2017) Sar-copenia and Frailty in Chronic Respiratory Disease: Lessons from Gerontology. Chronic Respiratory Disease, 14, 85-99.
https://doi.org/10.1177/1479972316679664
[7]  Poberezhets, V., Mostovoy, Y. and Demchuk, H. (2019) Exacer-bation of Chronic Obstructive Pulmonary Diseases as a Risk Factor of the Skeletal Muscle Dysfunction. Lung India, 36, 188-192.
[8]  Trajanoska, K., Schoufour, J.D., Darweesh, S.K., Benz, E., Medina-Gomez, C., Alferink, L.J., Lahousse, L., Brusselle, G., Stricker, B., Darwish Murad, S., et al.. (2018) Sarcopenia and Its Clinical Correlates in the General Population: The Rotterdam Study. Journal of Bone and Mineral Research, 33, 1209-1218.
https://doi.org/10.1002/jbmr.3416
[9]  Espíndola de Araújo, B., Teixeira, P.P., Valduga, K., da Silva Fink, J. and Silva, F.M. (2021) Prevalence, Associated Factors, and Prognostic Value of Sarcopenia in Patients with Acute Exacer-bated Chronic Obstructive Pulmonary Disease: A Cohort Study. Clinical Nutrition ESPEN, 42, 188-194.
https://doi.org/10.1016/j.clnesp.2021.01.042
[10]  Benz, E., Trajanoska, K., Lahousse, L., Schoufour, J.D., Ter-zikhan, N., De, Roos, E., de, Jonge, G.B., Williams, R., Franco, O.H., Brusselle, G., et al. (2019) Sarcopenia in COPD: A Systematic Review and Meta-Analysis. European Respiratory Review, 28, Article ID: 190049.
https://doi.org/10.1183/16000617.0049-2019
[11]  Sepúlveda-Loyola, W., Osadnik, C., Phu, S., Morita, A.A., Duque, G. and Probst, V.S. (2020) Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176.
https://doi.org/10.1002/jcsm.12600
[12]  Tsekoura, M., Tsepis, E., Billis, E. and Gliatis, J. (2020) Sarcopenia in Pa-tients with Chronic Obstructive Pulmonary Disease: A Study of Prevalence and Associated Factors in Western Greek Population. Lung India, 37, 479-484.
https://doi.org/10.4103/lungindia.lungindia_143_20
[13]  Byun, M.K., Cho, E.N., Chang, J., Ahn, C.M. and Kim, H.J. (2017) Sarcopenia Correlates with Systemic Inflammation in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 12, 669-675.
https://doi.org/10.2147/COPD.S130790
[14]  Can, B., Kara, O., Kizilarslanoglu, M.C., Arik, G., Aycicek, G.S., Sumer, F., Civelek, R., Demirtas, C. and Ulger, Z. (2017) Serum Markers of Inflammation and Oxidative Stress in Sar-copenia. Aging Clinical and Experimental Research, 29, 745-752.
https://doi.org/10.1007/s40520-016-0626-2
[15]  Li, H., Malhotra, S. and Kumar, A. (2008) Nuclear Factor-Kappa B Signaling in Skeletal Muscle Atrophy. Journal of Molecular Medicine, 86, 1113-1126.
https://doi.org/10.1007/s00109-008-0373-8
[16]  Reid, M.B. and Li, Y.P. (2001) Tumor Necrosis Factor-Alpha and Muscle Wasting: A Cellular Perspective. Respiratory Research, 2, 269-272.
[17]  Kuwano, K. and Hara, N. (2000) Sig-nal Transduction Pathways of Apoptosis and Inflammation Induced by the Tumor Necrosis Factor Receptor Family. American Journal of Respiratory Cell and Molecular Biology, 22, 147-149.
https://doi.org/10.1165/ajrcmb.22.2.f178
[18]  Anany, M.A., Kreckel, J., Füllsack, S., Rosenthal, A., Otto, C., Siegmund, D. and Wajant, H. (2018) Soluble TNF-Like Weak Inducer of Apoptosis (TWEAK) Enhances Poly(I:C)-Induced RIPK1-Mediated Necroptosis. Cell Death & Disease, 9, Article No. 1084.
https://doi.org/10.1038/s41419-018-1137-1
[19]  Li, C.-W., Yu, K., Shyh-Chang, N., Li, G.-X., Jiang, L.-J., Yu, S.-L., Xu, L.-Y., Liu, R.-J., Guo, Z.-J., Xie, H.-Y., et al. (2019) Circulating Factors Associated with Sarcopenia During Ageing and After Intensive Lifestyle Intervention. Journal of Cachexia, Sarcopenia and Muscle, 10, 586-600.
https://doi.org/10.1002/jcsm.12417
[20]  Barreiro, E. (2016) Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions. Proteomes, 4, Article No. 18.
https://doi.org/10.3390/proteomes4020018
[21]  Sepúlveda-Loyola, W., de Castro, L.A., Matsumoto, A.K., Camillo, C.A., Barbosa, D.S., Galvan, C.C.R. and Probst, V.S. (2021) NOVEL Antioxidant and Oxidant Biomarkers Related to Sarcopenia in COPD. Heart & Lung, 50, 184-191.
https://doi.org/10.1016/j.hrtlng.2020.06.001
[22]  Powers, S.K., Duarte, J., Kavazis, A.N. and Talbert, E.E. (2010) Reactive Oxygen Species Are Signalling Molecules for Skeletal Mus-cle Adaptation. Experimental Physiology, 95, 1-9.
https://doi.org/10.1113/expphysiol.2009.050526
[23]  Fan, J., Kou, X., Jia, S., Yang, X., Yang, Y. and Chen, N. (2016) Autophagy as a Potential Target for Sarcopenia. Journal of Cellular Physiology, 231, 1450-1459.
https://doi.org/10.1002/jcp.25260
[24]  Powers, S.K., Morton, A.B., Ahn, B. and Smuder, A.J. (2016) Redox Control of Skeletal Muscle Atrophy. Free Radical Biology & Medicine, 98, 208-217.
https://doi.org/10.1016/j.freeradbiomed.2016.02.021
[25]  Hyatt, H., Deminice, R., Yoshihara, T. and Powers, S.K. (2019) Mitochondrial Dysfunction Induces Muscle Atrophy during Prolonged Inactivity: A Review of the Causes and Effects. Archives of Biochemistry and Biophysics, 662, 49-60.
https://doi.org/10.1016/j.abb.2018.11.005
[26]  Coen, P.M., Jubrias, S.A., Distefano, G., Amati, F., Mackey, D.C., Glynn, N.W., Manini, T.M., Wohlgemuth, S.E., Leeuwenburgh, C., Cummings, S.R., et al. (2013) Skeletal Muscle Mi-tochondrial Energetics Are Associated with Maximal Aerobic Capacity and Walking Speed in Older Adults. The Jour-nals of Gerontology: Series A, Biological Sciences and Medical Sciences, 68, 447-455.
https://doi.org/10.1093/gerona/gls196
[27]  Short, K.R., Vittone, J.L., Bigelow, M.L., Proctor, D.N. and Nair, K.S. (2004) AGE and Aerobic Exercise Training Effects on Whole Body and Muscle Protein Metabolism. American Journal of physiology Endocrinology and Metabolism, 286, E92-E101.
https://doi.org/10.1152/ajpendo.00366.2003
[28]  Evans, W.J. and Lexell, J. (1995) Human Aging, Muscle Mass, and Fiber Type Composition. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 50, 11-16.
https://doi.org/10.1093/gerona/50A.Special_Issue.11
[29]  Kalyani, R.R., Corriere, M. and Ferrucci, L. (2014) Age-Related and Disease-Related Muscle Loss: The Effect of Diabetes, Obesity, and Other Diseases. The Lancet Diabe-tes & Endocrinology, 2, 819-829.
https://doi.org/10.1016/S2213-8587(14)70034-8
[30]  Schakman, O., Kalista, S., Barbé, C., Loumaye, A. and Thissen, J.P. (2013) Glucocorticoid-Induced Skeletal Muscle Atrophy. The International Journal of Biochemistry & Cell Biology, 45, 2163-2172.
https://doi.org/10.1016/j.biocel.2013.05.036
[31]  Bodine, S.C. and Furlow, J.D. (2015) Glucocorticoids and Skel-etal Muscle. In: Wang, J.-C. and Harris, C., Eds., Glucocorticoid Signaling. Advances in Experimental Medicine and Bi-ology, Vol. 872, Springer, New York, 145-176.
https://doi.org/10.1007/978-1-4939-2895-8_7
[32]  Shah, O.J., Kimball, S.R. and Jefferson, L.S. (2000) Among Translational Effectors, p70s6K Is Uniquely Sensitive to Inhibition by Glucocorticoids. The Biochemical Journal, 347, 389-397.
https://doi.org/10.1042/bj3470389
[33]  Kalu?niak-Szymanowska, A., Krzymińska-Siemaszko, R., Deskur-?mielecka, E., Lewandowicz, M., Kaczmarek, B. and Wieczorowska-Tobis, K. (2021) Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD. Nutrients, 14, Article No. 44.
https://doi.org/10.3390/nu14010044
[34]  Milan, G., Romanello, V., Pescatore, F., Armani, A., Paik, J.-H., Frasson, L., Seydel, A., Zhao, J., Abraham, R., Goldberg, A.L., et al. (2015) Regulation of Autophagy and the Ubiqui-tin-Proteasome System by the FoxO Transcriptional Network during Muscle Atrophy. Nature Communications, 6, Arti-cle No. 6670.
https://doi.org/10.1038/ncomms7670
[35]  Wang, X., Huang, L., Jiang, S., Cheng, K., Wang, D., Luo, Q., Wu, X. and Zhu, L. (2021) Testosterone Attenuates Pulmonary Epithelial Inflammation in Male Rats of COPD Mod-el through Preventing NRF1-Derived Nf-κB Signaling. Journal of Molecular Cell Biology, 13, 128-140.
https://doi.org/10.1093/jmcb/mjaa079
[36]  Boland, R. (1986) Role of Vitamin D in Skeletal Muscle Function. En-docrine Reviews, 7, 434-448.
https://doi.org/10.1210/edrv-7-4-434
[37]  Langen, R.C.J., Gosker, H.R., Remels, A.H.V. and Schols, A.M.W.J. (2013) Triggers and Mechanisms of Skeletal Muscle Wasting in Chronic Obstructive Pulmonary Disease. The Interna-tional Journal of Biochemistry & Cell Biology, 45, 2245-2256.
https://doi.org/10.1016/j.biocel.2013.06.015
[38]  Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., et al. (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31.
https://doi.org/10.1093/ageing/afy169
[39]  梁丽, 刘双玉, 熊萍. 生物电阻抗法与简易五项问卷诊断社区老年人肌少症的一致性分析[J]. 广西医学, 2022, 44(3): 270-273+278.
[40]  Barbosa-Silva, T.G., Menezes, A.M., Bielemann, R.M., Malmstrom, T.K. and Gonzalez, M.C. (2016) Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. Journal of the American Medical Directors Association, 17, 1136-1141.
https://doi.org/10.1016/j.jamda.2016.08.004
[41]  Warnken-Miralles, M.D., López-García, F., Zamora-Molina, L., Soler-Sempere, M.J., Padilla-Navas, I. and García-Pachón, E. (2021) Sarcopenia Index in Hospitalized Patients with Chronic Obstructive Pulmonary Disease Exacerbation. Medicina, 81, 323-328.
[42]  Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.W., Chou, M.Y., Iijima, K., Jang, H.C., Kang, L., Kim, M., Kim, S., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.
https://doi.org/10.1016/j.jamda.2019.12.012
[43]  Kashani, K.B., Frazee, E.N., Kukrálová, L., Sarvottam, K., He-rasevich, V., Young, P.M., Kashyap, R. and Lieske, J.C. (2017) Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine, 45, e23-e29.
https://doi.org/10.1097/CCM.0000000000002013
[44]  van Bakel, S.I.J., Gosker, H.R., Langen, R.C. and Schols, A. (2021) Towards Personalized Management of Sarcopenia in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 16, 25-40.
https://doi.org/10.2147/COPD.S280540
[45]  Hirai, K., Tanaka, A., Homma, T., Goto, Y., Akimoto, K., Uno, T., Yoshitaka, U., Miyata, Y., Inoue, H., Ohta, S., et al. (2021) Serum Creatinine/Cystatin C Ratio as a Surrogate Marker for Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Clinical Nutrition, 40, 1274-1280.
https://doi.org/10.1016/j.clnu.2020.08.010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133