全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv8的交通信号灯识别
Traffic Signals Recognition Based on YOLOv8

DOI: 10.12677/AIRR.2023.123028, PP. 246-254

Keywords: YOLOv8,交通信号灯,模型训练,目标检测
YOLOv8
, Traffic Signals, Model Training, Pattern Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

交通信号灯的识别对于辅助驾驶系统是至关重要的,它可以帮助减少事故和提高行车安全。本文提出了基于YOLOv8的交通信号灯标志识别方法,该方法包括数据集的构建、模型的训练、自然场景测试三个主要部分。首先,通过网络公开的交通信号灯数据集进行标注,使用YOLOv8算法框架对数据集进行训练,得出最优模型。最后,在真实道路场景中对训练好的模型进行了测试,得到了较为准确的结果。通过实验对比,我们发现YOLOv8训练后的模型性能优异,在保证精度的情况下提高检测速度,还可以解决目标部分遮挡和小尺寸目标检测等问题,从而提高了识别的准确性和效率。在辅助驾驶系统中应用该方法可以更加精确地判断箭头指向性信号灯和全屏型信号灯,帮助提高车辆在路面上的运动安全性和稳定性。目前的大多方法仅仅针对于交通信号灯的颜色以及整体交通信号灯位置进行判断识别,本文会更细化交通灯上各式各样的方向标志颜色做出分类识别,通过YOLOv8算法在减少参数的情况下还能够大幅度减少计算资源,通过实验结果表明,迭代200轮后的模型mAP50-95便达到了82.6%,FPS达到了27.2帧/毫秒。
The recognition of traffic lights is crucial for driver assistance systems, which can help reduce accidents and improve driving safety. This paper proposes a traffic light sign recognition method based on YOLOv8, which includes three main parts: data set construction, model training and natural scene testing. First, the traffic light data set disclosed through the network was annotated, the YOLOv8 algorithm framework was used to train the data set, and the optimal model was obtained. Finally, the trained model is tested in a real road scene, and the results are more accurate. Through experimental comparison, we found that the model trained by YOLOv8 has excellent performance, improves detection speed while ensuring accuracy, and can also solve problems such as partial occlusion of the target and small-size target detection, thus improving the accuracy and efficiency of recognition. The application of this method in the auxiliary driving system can judge the arrow directional signal light and the full-screen signal light more accurately, and help to improve the safety and stability of the vehicle on the road. Most of the current methods only judge and identify the color of traffic lights and the overall position of traffic lights. This paper will further refine the classification and recognition of various direction sign colors on traffic lights. The YOLOv8 algorithm can greatly reduce computing resources while reducing parameters. Experimental results show that after 200 iterations, the model achieves a mAP50-95 of 82.6% and an FPS of 27.2 frames per millisecond.

References

[1]  余楚礼, 朱强. 基于深度学习和Opencv的交通灯识别算法研究[J]. 上海汽车, 2019(7): 19-22.
[2]  董晓玉. 基于卷积神经网络的交通信号灯实时识别方法研究[D]: [硕士学位论文]. 合肥: 安徽建筑大学, 2020.
[3]  罗雯. 基于深度学习的交通信号灯识别算法研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2020.
[4]  王莹, 丁鹏. 基于深度学习的交通信号灯检测及分类方法[J]. 汽车实用技术, 2018(17): 89-91.
[5]  谭思奇. 基于深度学习的道路交通信号灯检测与识别方法研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2022.
[6]  邓天民, 谭思奇, 蒲龙忠. 基于改进YOLOv5s的交通信号灯识别方法[J]. 计算机工程, 2022, 48(9): 55-62.
[7]  崔帅华. 基于深度学习的交通信号灯检测与识别方法研究[D]: [硕士学位论文]. 焦作: 河南理工大学, 2021.
[8]  Chen, Y.H., Li, W., Sakaridis, C., Dai, D.X. and Van Gool, L. (2018) Domain Adaptive Faster R-CNN for Object Detection in the Wild. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 3339-3348.
https://doi.org/10.1109/CVPR.2018.00352
[9]  Qi, C., Gao, J., Pearson, S., et al. (2022) Tea Chrysanthemum Detection under Unstructured Environments Using the TC-YOLO Model. Expert Systems with Applications, 193, Article ID: 116473.
https://doi.org/10.1016/j.eswa.2021.116473
[10]  Wu, J., Zhang, H., Chamola, V., et al. (2022) Brain-Computer Interface-Based Target Recognition System Using Transfer Learning: A Deep Learning Approach. Computational Intelligence, 38, 139-155.
https://doi.org/10.1111/coin.12451
[11]  郭磊, 薛伟, 王邱龙, 等. 基于改进YOLOv5的小目标检测算法[J]. 电子科技大学学报, 2022, 51(2): 8.
[12]  Solawetz, J. and Francesco (2023) What is YOLOv8? The Ultimate Guide.
https://roboflow.com/
[13]  He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2015) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916.
[14]  Treven, J.R. and Cordova-Esparaza, D.M. (2023) A Comprehensive Review of YOLO: From YOLOv1 to YOLOv8 and beyond.
https://arxiv.org/pdf/2304.00501.pdf
[15]  Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y. and Hsieh, J.W. (2019) CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, 14-19 June 2020, 1571-1580.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133