|
基于支持向量机分类算法的齿轮箱故障诊断
|
Abstract:
针对现有齿轮箱故障评价需要研究设备机理造成的效率底下,功能性不强的问题,提出了基于支持向量机分类算法的齿轮箱故障诊断方法。首先,对传感器收集到的振动信号数据进行分析,提取相关特征。然后,绘制不同传感器在不同状态下的振动信号时间序列函数,并对这些函数的特征进行了简要分析。其次,对数据提取了平均值,方差这两个用以描述振动数据的总体趋势的特征变量,以及峰度,偏度这两个对判断齿轮箱齿轮故障有着重要作用的特征变量,并利用MATLAB、SPSSPRO对每一组数据进行了特征数据计算。最后,利用孤立森林、朴素贝叶斯、支持向量机三种分类算法,分别对数据集进行模型求解,然后通过对比三个算法结果中的准确率、召回率和测试集、训练集之间拟合程度,得到支持向量机分类算法针对齿轮箱的故障检测最优。
A gearbox fault diagnosis method based on a support vector machine classification algorithm is proposed to address the issue of low efficiency and weak functionality caused by the need to study equipment mechanisms for existing gearbox fault evaluation. Firstly, the vibration signal data collected by the sensor is analyzed and relevant features are extracted. Then, the time series functions of vibration signals of different sensors in different states are drawn, and the characteristics of these functions are briefly analyzed. Secondly, two characteristic variables, mean and variance, are extracted from the data to describe the overall trend of vibration data, as well as kurtosis and skewness, which are important for determining gearbox gear faults. Feature data calculations are performed on each set of data using MATLAB and SPSS PRO. Finally, three classification algorithms, namely isolated forest, naive Bayes, and support vector machine, are used to solve the model for the dataset. Then, by comparing the accuracy, recall, and fit between the test and training sets of the three algorithms, the optimal fault detection performance of the support vector machine classification algorithm for the gearbox is obtained.
[1] | 薛皓天. 基于声发射的行星齿轮箱故障识别研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2021.
https://doi.org/10.27005/d.cnki.gdzku.2021.002345 |
[2] | 胡志红, 张秀丽, 张向军, 白恺, 林丽, 王素焕. 风电机组齿轮箱故障评价方法研究现状[J]. 设备管理与维修, 2018(2): 31-35. https://doi.org/10.16621/j.cnki.issn1001-0599.2018.01D.18 |
[3] | Caselitz, P. and Giebhard, J. (2003) Fault Prediction Techniques for Offshore Wind Farm Maintenance and Repair Strategies. Institut fuer Solare Energieversorgungstechnik (ISET), Kassel. |
[4] | Wilkinson, M.R., Spinato, F. and Tavner, P.J. (2007) Condition Monitoring of Generators & Other Subassemblies in Wind Turbine Drive Trains. 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cracow, 6-8 September 2007, 388-392. https://doi.org/10.1109/DEMPED.2007.4393125 |
[5] | 魏云冰. 小波变换在电机故障诊断与测试中的应用研究[D]: [博士学位论文]. 杭州: 浙江大学, 2002. |
[6] | 戚晓利, 程主梓, 崔创创, 杨艳. 基于JS-VME-DBN和MS-UMAP的行星齿轮箱故障诊断方法[J/OL]. 航空动力学报: 1-12. https://doi.org/10.13224/j.cnki.jasp.20220221, 2022-07-30. |
[7] | 庄敏, 李革, 范智军, 孔德成. 基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断[J/OL]. 机电工程, 1-10. http://kns.cnki.net/kcms/detail/33.1088.TH.20220701.1254.017.html, 2022-07-30. |
[8] | 魏秀业, 程海吉, 贺妍, 赵峰, 贺全玲. 基于特征融合与ResNet的行星齿轮箱故障诊断[J]. 电子测量与仪器学报, 2022, 36(5): 213-222. https://doi.org/10.13382/j.jemi.B2105065 |
[9] | 金嘉埼, 关新, 单光坤, 等. 小波理论在风力发电机振动监测中的应用[J]. 沈阳工业大学学报, 2008, 30(5): 520-524. |
[10] | Amirat, Y., Benbouzid, M.E.H., Al-Ahmar, E., et al. (2009) A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion System. Renewable and Sustainable Energy Reviews, 13, 2629-2636.
https://doi.org/10.1016/j.rser.2009.06.031 |
[11] | Wu, J.-D. and Liu, C.-H. (2009) An Expert System for Fault Diagnosis in Internal Combustion Engines Using Wavelet Packet Transform and Neural Network. Expert System with Applications, 36, 4278-4286.
https://doi.org/10.1016/j.eswa.2008.03.008 |
[12] | 王诚, 狄萱. 孤立森林算法研究及并行化实现[J]. 计算机技术与发展, 2021, 31(6): 13-18. |
[13] | 陈玉雪. 一种基于朴素贝叶斯的Honeywords区分攻击方法[J]. 网络安全技术与应用, 2022(5): 41-43. |
[14] | 李亚锦, 刘英男, 张婉莹, 于大洋, 张国新, 苏宁. 基于朴素贝叶斯算法的避雷器缺陷识别方法研究[J]. 电工电气, 2022(1): 20-23. |
[15] | 张馨月, 宋绍成. 突发事件中基于支持向量机算法的文本分类研究[J]. 信息技术与信息化, 2022(8): 13-16. |