|
Applied Physics 2023
第一性原理研究ZrO2晶体中的氧填隙
|
Abstract:
本文利用第一性原理研究了单斜相结构ZrO2晶体中氧填隙Oi对晶体结构,电子结构和光学性质的影响。利用广义梯度近似GGA结合PBE交换泛函计算的带隙严重低于实验值,无法获取准确的缺陷转化能级。本文结合Alkauskas提出的带边修正的方法,采用杂化泛函的方法获取更准确的电子能带结构。采用有效尺寸修正(FNV)方案消除,由于引入周期性边界条件,带电缺陷间的不可忽视的自相互作用。通过以上的修正,我们可以得到准确的缺陷形成能和缺陷转化能级。通过一维位形坐标探究电子跃迁的过程以及能量的变化,基于Frank-Condon原理方法给出归一化的光谱线形图。计算得到 和 的吸收谱分别位于8.69 eV和7.06 eV,而发射峰位置分别位于5.20 eV和5.52 eV。氧填隙的吸收峰和发射峰均在紫外区。
The effects of oxygen interstitial Oi in monoclinic ZrO2 crystal on the crystal structure, electronic structure and optical properties have been studied by First-Principles. The band gap calculated by generalized gradient approximation GGA combined with PBE exchange functional is seriously lower than the experimental value, and the accurate defect transformation level cannot be obtained. In this paper, combining the method of band edge modification proposed by Alkauskas, a hybrid functional method is used to obtain more accurate electronic band structure. The effective size correction (FNV) scheme is used to eliminate the non-negligible self-interaction between charged defects due to the introduction of periodic boundary conditions. Through the above correction, we can get the exact defect formation energy and defect transformation energy level. The process of electron transition and the change of energy are investigated by one-dimensional configuration coordinates, and the normalized spectral line diagram is given based on the Frank-Condon principle method. The calculated absorption spectra of and are 8.69 eV and 7.06 eV respectively, and the emission peaks are 5.20 eV and 5.52 eV respec-tively. The absorption and emission peaks of oxygen interstitial are both in the ultraviolet region.
[1] | 饶晓晓, 胡树兵. 纳米ZrO2应用现状及前景研究[J]. 材料导报, 2007, 21(z1): 143-146. |
[2] | Davis, B.H., Keogh, R.A. and Srinivasan, R. (1994) Sulfated Zirconia as a Hydrocarbon Conversion Catalyst. Catalysis Today, 20, 219-256. https://doi.org/10.1016/0920-5861(94)80004-9 |
[3] | 刘欣梅, 阎子峰. 介孔二氧化锆分子筛的合成机理述[J]. 分子催化, 2006, 20(1): 84-94. |
[4] | Seuser, G., Martinelli, M., Garcia, E.S., et al. (2023) Reverse Water-Gas Shift: Na Doping of m-ZrO2 Supported Pt for Selectivity Control. Applied Catalysis A: General, 650, Article ID: 119000.
https://doi.org/10.1016/j.apcata.2022.119000 |
[5] | Puigdollers, A.R., Illas, F. and Pacchioni, G. (2016) Structure and Prop-erties of Zirconia Nanoparticles from Density Functional Theory Calculations. The Journal of Physical Chemistry, 120, 4392-4402.
https://doi.org/10.1021/acs.jpcc.5b12185 |
[6] | Wang, M., Li, H., Ren, J., et al. (2022) Research on Novel Quantum Phe-nomena of Transition Metal-Doped ZrO2 Nanosheets. Journal of Chemical Physics, 157, Article ID: 234701. https://doi.org/10.1063/5.0126291 |
[7] | Zhou, Y.M., Yang, W.B., Wang, X.T., et al. (2020) Preparation of ZrO2-Based Catalytic Fibers via the Assistance of Microfluidic Chips. Industrial & Engineering Chemistry Research, 59, 21592-21601.
https://doi.org/10.1021/acs.iecr.0c04441 |
[8] | Smith, D.K. and Newkirk, W. (1965) The Crystal Structure of Baddeleyite (Monoclinic ZrO2) and Its Relation to the Polymorphism of ZrO2. Acta Crystallographica, 18, 983-991. https://doi.org/10.1107/S0365110X65002402 |
[9] | Heuer, A.H., Claussen, N., Kriven, W.M. and Ruhle, M. (1982) Stability of Tetragonal ZrO2 Particles in Ceramic Matrices. Journal of the American Ceramic Society, 65, 642-650. https://doi.org/10.1111/j.1151-2916.1982.tb09946.x |
[10] | Garvie, R.C. and Nicholson, P.S. (1972) Phase Analysis in Zir-conia Systems. Journal of the American Ceramic Society, 55, 303-305. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x |
[11] | Wolten, G.M. (1963) Diffusionless Phase Transformations in Zirconia and Hafnia. Journal of the American Ceramic Society, 46, 418-422. https://doi.org/10.1111/j.1151-2916.1963.tb11768.x |
[12] | Heuer, A.H., Ruhle, M. and Marshall, D.B. (1990) On the Ther-moelastic Martensitic Transformation in Tetragonal Zirconia. Journal of the American Ceramic Society, 73, 1084-1093.
https://doi.org/10.1111/j.1151-2916.1990.tb05161.x |
[13] | Mikhailov, M.M. and Utebekov, T.A. (2012) Qualitative and Quantitative Differences in the Absorption Spectra of Electron-Irradiated Reflective Coatings Based on Mixtures of BaTio3, Powder with ZrO2, Micro-or Nanopowder of Different Concentrations. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 6, 923-929.
https://doi.org/10.1134/S1027451012110067 |
[14] | Sal’nikov, V.V. (2000) Influence off Centers on the Optical and Ad-sorptive Properties of Doped ZrO2 Crystals. Inorganic Materials, 36, 479-483. https://doi.org/10.1007/BF02758052 |
[15] | 吕彩霞. 氧化锆晶化过程的研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2010. |
[16] | Khan, S.A., Fu, Z.Y., Asif, M., Wang, W.M. and Wang, H. (2015) Formation Mechanism and Template-Free Synthesis of Hierarchicalm-ZrO2 Nanorods by Hydro-thermal Method. Journal of Wuhan University of Technology-Mater. Sci. Ed., 30, 1163-1166. https://doi.org/10.1007/s11595-015-1289-0 |
[17] | Letichevsky, S., Zonetti, P.C., Reis, P.P.P., et al. (2015) The Role of m-ZrO2 in the Selective Oxidation of Ethanol to Acetic acid Employing PdO/m-ZrO2. Journal of Molecular Catalysis A: Chemical, 410, 177-183.
https://doi.org/10.1016/j.molcata.2015.09.012 |
[18] | Reis, P.P., Zonetti, P.C., Passos, F.B. and Appel, L.G. (2017) Acetic Acid Synthesis from Ethanol: Describing the Synergy between PdO and m-ZrO2. Catalysis Letters, 147, 821-827. https://doi.org/10.1007/s10562-017-2001-0 |
[19] | Silva-Calpa, L.D.R., Zonetti, P.C., Rodrigues, C.P., et al. (2016) The ZnxZr1-xO2-y Solid Solution on m-ZrO2: Creating O Vacancies and Improving the m-ZrO2Redox Properties. Journal of Molecular Catalysis A: Chemical, 425, 166-173.
https://doi.org/10.1016/j.molcata.2016.10.008 |
[20] | Ohtaka, O., Andrault, D., Bouvier, P., et al. (2005) Phase Relations and Equation of State of ZrO2 to 100 GPa. Journal of Applied Crystallography, 38, 727-733. https://doi.org/10.1107/S0021889805018145 |
[21] | Kawasaki, S. and Yamanaka, T. (1994) Elastic Properties of Monoclinic and Orthorhombic ZrO2. Journal of Materials Science Letters, 13, 514-515. https://doi.org/10.1007/BF00540184 |
[22] | 李海心, 刘廷禹, 刘检, 等. ZrO2晶体本征点缺陷形成能的第一性原理计算及热动力学性质[J]. 硅酸盐学报, 2015, 43(6): 788-793. |
[23] | Chen, W. and Pasquarello, A. (2015) First-Principles Determination of Defect Energy Levels through Hybrid Density Functionals and GW. Journal of Physics: Condensed Matter, 27, Article ID: 133202.
https://doi.org/10.1088/0953-8984/27/13/133202 |
[24] | Liu, B., Wu, L.J., Zhao, Y.Q., Wang, L.Z. and Cai, M.Q. (2016) First-Principle Investigations of Structural, Electronic, Magnetic and Optical Properties of Bulk BiVO3. RSC Advances, 95, 92473-92478.
https://doi.org/10.1039/C6RA17053F |
[25] | Li, Y., Uberuaga, B., Jiang, C., et al. (2012) Role of Antisite Disorder on Preamorphization Swelling in Titanate Pyrochlores. Physical Review Letters, 108, Article ID: 195504. https://doi.org/10.1103/PhysRevLett.108.195504 |
[26] | Kresse, G. (1996) Efficient Iterative Schemes for ab initio To-tal-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169 |
[27] | Chen, M.H., Thomas, J.C., Natarajan, A.R. and Van der Ven, A. (2016) Effects of Strain on the Stability of Tetragonal. Physical Review B, 94, Article ID: 054108. https://doi.org/10.1103/PhysRevB.94.054108 |
[28] | Lu, X.X., Liu, T.Y., Fu, M.X. and Li, J. (2018) First-Principles Study of the Optical Properties of YPO4 Crystal with Oxygen Vacancies. Journal of Physics & Chemistry of Solids, 120, 1-5. https://doi.org/10.1016/j.jpcs.2018.04.018 |
[29] | Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2006) Erratum: “Hybrid Func-tionals Based on a Screened Coulomb Potential” [J. Chem. Phys. 118, 8207 (2003)]. Journal of Chemical Physics, 124, Article ID: 219906.
https://doi.org/10.1063/1.2204597 |
[30] | Hummer, K., Harl, J. and Kresse, G. (2009) Heyd-Scuseria-Ernzerhof Hybrid Functional for Calculating the Lattice Dynamics of Semiconductors. Physical Review B, 80, 115205. https://doi.org/10.1103/PhysRevB.80.115205 |
[31] | Liang, Z., Wang, W., Zhang, M., et al. (2017) Structural, Mechanical and Thermodynamic Properties of ZrO2, Polymorphs by First-Principles Calculation. Physica B: Condensed Matter, 511, 10-19.
https://doi.org/10.1016/j.physb.2017.01.025 |
[32] | Alkauskas, A., Broqvist, P. and Pasquarello, A. (2008) Defect Energy Levels in Density Functional Calculations: Alignment and Band Gap Problem. Physical Review Letters, 101, Article ID: 046405.
https://doi.org/10.1103/PhysRevLett.101.046405 |
[33] | 方容川. 固体光谱学[M]. 合肥: 中国科学技术大学出版社, 2003. |
[34] | Alkauskas, A., Lyons, J.L., Steiauf, D. and Van de Walle, C.G. (2012) First-Principles Calculations of Luminescence Spectrum Line Shapes for Defects in Semiconductors: The Example of GaN and ZnO. Physical Review Letters, 109, Article ID: 267401. https://doi.org/10.1103/PhysRevLett.109.267401 |
[35] | Dreyer, C.E., Alkauskas, A., Lyons, J.L., et al. (2018) First-Principles Calculations of Point Defects for Quantum Technologies. Annual Review of Materials Research, 48, 1-26. https://doi.org/10.1146/annurev-matsci-070317-124453 |
[36] | Huang, K. and Rhys, A. (1950) Theory of Light Absorption and NonRadiative Transitions in F-Centres. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 204, 406-423.
https://doi.org/10.1098/rspa.1950.0184 |
[37] | Alkauskas, A., Mccluskey, M.D. and Van De Walle, C.G. (2016) Tutorial: Defects in Semiconductors—Combining Experiment and Theory. Journal of Applied Physics, 119, Article ID: 181101. https://doi.org/10.1063/1.4948245 |