Assessing soil organic carbon stock
(SOCS) and soil quality (SQ) helps design better agricultural practices
to improve environmental sustainability and productivity. The purpose of the
study is to assess SOCS and soil quality SQ in the main agroecosystems (AES) of
the eastern flank of Mount Bambouto (West, Cameroon). Using multiple statistics
tests and principal component analysis (PCA), SOCS and Soil Quality Index (SQI)
were computed for each AES. SOCS and SQI were computed based on soil chemical
properties and analysis of variance. Topsoil samples (0 - 30 cm) were collected in
a different AES and analyzed in the laboratory. The four AES identified and
selected are cultivated land (CL), forest
areas (FA), mixed areas (MA), and bush areas (BA). Further, multiple
comparison tests were used to compare soils from different AES. PCA was used to
select the most appropriate indicators that control SOCS and SQ. Several soil
properties showed high to very high coefficient
of variation within the AES. Organic matter (OM) was significantly high in FA.
SOCS and SQ differ significantly (p =
0.000) between the AES. The study further indicates that the main variables controlling SQ within the eastern
flank of Mount Bambouto are OM, pHw, N, C/N, and CEC. While the main soil
parameters controlling SOCS are OM, OC, BD, C/N, S, and pHKCl.
References
[1]
Adams, W. A. (1973). The Effect of Organic Matter on the Bulk and True Densities of Some Uncultivated Podzolic Soils. Journal of Soil Science, 24, 285-294. https://doi.org/10.1111/j.1365-2389.1973.tb00737.x
[2]
Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agriculture, Ecosystems & Environment, 90, 25-45. https://doi.org/10.1016/S0167-8809(01)00174-8
[3]
Batjes, N. H. (2004). Estimation of Soil Carbon Gains upon Improved Management within Croplands of Africa. Environment, Development and Sustainability, 6, 133-143. https://doi.org/10.1023/B:ENVI.0000003633.14591.fd
[4]
Beverwijk, A. (1967). Particle Size Analysis of Soils by Means of the Hydrometer Method. Sedimentary Geology, 1, 403-406. https://doi.org/10.1016/0037-0738(67)90070-X
[5]
Brejda, J. J., Moorman, T. B., Karlen, D. L., & Dao, T. H. (2000). Identification of Regional Soil Quality Factors and Indicators I. Central and Southern High Plains. Soil Science Society of America Journal, 64, 2115-2124. https://doi.org/10.2136/sssaj2000.6462115x
[6]
Buondonno, A., Rashad, A. A., & Coppola, E. (1995). Comparing Tests for Soil Fertility. II. The Hydrogen Peroxide/Sulfuric Acid Treatment as an Alternative to the Copper/Selenium Catalyzed Digestion Process for Routine Determination of Soil Nitrogen-Kjeldahl. Communications in Soil Science and Plant Analysis, 26, 1607-1619. https://doi.org/10.1080/00103629509369394
[7]
Eaton, J. M., McGoff, N. M., Byrne, K. A., Leahy, P., & Kiely, G. (2008). Land Cover Change and Soil Organic Carbon Stocks in the Republic of Ireland 1851-2000. Climatic Change, 91, 317-334. https://doi.org/10.1007/s10584-008-9412-2
[8]
FAO (2006). Challenges and Opportunities in a Global World.
[9]
Fournier, A. (2020). L’agroécosystème et les génies chez les Sèmè du Burkina Faso. Réflexion sur la notion de services écosystémiques culturels. Cahiers Agricultures, 29, Article No. 25. https://doi.org/10.1051/cagri/2020024
[10]
Heanes, D. L. (1984). Determination of Total Organic-C in Soils by an Improved Chromic Acid Digestion and Spectrophotometric Procedure. Communications in Soil Science and Plant Analysis, 15, 1191-1213. https://doi.org/10.1080/00103628409367551
[11]
IRAD (2008). Deuxième rapport sur l’état des ressources phytogénétiques pour l’alimentation et l’agriculture au Cameroun. Yaounde. Cameroon. Technical Report. 2008.
[12]
Kenye, A., Kumar Sahoo, U., Lanabir Singh, S., & Gogoi, A. (2019). Soil Organic Carbon Stock of Different Land Uses of Mizoram, Northeast India. AIMS Geosciences, 5, 25-40. https://doi.org/10.3934/geosci.2019.1.25
[13]
Kome, G. K., Enang, R. K., & Yerima, B. P. K. (2021). Soil Organic Carbon Distribution in a Humid Tropical Plain of Cameroon: Interrelationships with Soil Properties. Applied and Environmental Soil Science, 2021, Article ID: 6052513. https://doi.org/10.1155/2021/6052513
[14]
Manlay, R. J., Feller, C., & Swift, M. J. (2007). Historical Evolution of Soil Organic Matter Concepts and Their Relationships with the Fertility and Sustainability of Cropping Systems. Agriculture, Ecosystems & Environment, 119, 217-233. https://doi.org/10.1016/j.agee.2006.07.011
[15]
Mehlich, A. (1984). Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416. https://doi.org/10.1080/00103628409367568
[16]
Minasny, B., & Hartemink, A. E. (2011). Predicting Soil Properties in the Tropics. Earth-Science Reviews, 106, 52-62. https://doi.org/10.1016/j.earscirev.2011.01.005
[17]
Ngo-Mbogba, M., Yemefack, M., & Nyeck, B. (2015). Assessing Soil Quality under Different Land Cover Types within Shifting Agriculture in South Cameroon. Soil and Tillage Research, 150, 124-131. https://doi.org/10.1016/j.still.2015.01.007
[18]
Nguemezi, C., Tematio, P., Silatsa, F. B. T., & Yemefack, M. (2021). Spatial Variation and Temporal Decline (1985-2017) of Soil Organic Carbon Stocks (SOCS) in Relation to Land Use Types in Tombel Area, South-West Cameroon. Soil and Tillage Research, 213, Article ID: 105114. https://doi.org/10.1016/j.still.2021.105114
[19]
Nguemezi, C., Tematio, P., Yemefack, M., Tsozue, D., & Silatsa, T. B. F. (2020). Soil Quality and Soil Fertility Status in Major Soil Groups at the Tombel Area, South-West Cameroon. Heliyon, 6, e03432. https://doi.org/10.1016/j.heliyon.2020.e03432
[20]
Raitif, J., Plantegenest, M., & Roussel, J.M. (2019). From Stream to Land: Ecosystem Service Provided by Stream Insects to Agriculture. Ecosystems & Environment, 270-271, 32-40. https://doi.org/10.1016/j.agee.2018.10.013
[21]
Ramesh, T., Manjaiah, K. M., Mohopatra, K. P., Rajasekar, K., & Ngachan, S. V. (2015). Assessment of Soil Organic Carbon Stocks and Fractions under Different Agroforestry Systems in Subtropical Hill Agroecosystems of North-East India. Agroforestry Systems, 89, 677-690. https://doi.org/10.1007/s10457-015-9804-z
[22]
Reyna-Bowen, L., Lasota, J., Vera-Montenegro, L., Vera-Montenegro, B., & Błońska, E. (2019). Distribution and Factors Influencing Organic Carbon Stock in Mountain Soils in Babia Góra National Park, Poland. Applied Sciences (Switzerland), 9, Article No. 3070. https://doi.org/10.3390/app9153070
[23]
Silatsa, F. B. T., Yemefack, M., & Dameni, H. (2014). Variabilité des stocks de carbone en zone forestière du Cameroun, Approche évaluative dans le paysage agricole itinérant de la commune d’Ayos. S. ed. Editions Universitaires Europeennes & Allemagne.
[24]
Silatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing Countrywide Soil Organic Carbon Stock Using Hybrid Machine Learning Modelling and Legacy Soil Data in Cameroon. Geoderma, 367, Article ID: 114260. https://doi.org/10.1016/j.geoderma.2020.114260
[25]
Tematio, P., Fritsch, E., Hodson, M. E., Lucas, Y., Bitom, D., & Bilong, P. (2009). Mineral and Geochemical Characterization of a Leptic Aluandic Soil and a Thapto Aluandic-Ferralsol Developed on Trachytes in Mount Bambouto (Cameroon Volcanic Line). Geoderma, 152, 314-323. https://doi.org/10.1016/j.geoderma.2009.05.029
[26]
Tiwari, S. I. S. C. (2015). Sequestration of Soil Organic Carbon Pool under Different Land Uses in Bilaspur District of Achanakmar, Chhattisgarh. International Journal of Science and Research (IJSR), 4, 1920-1924.
[27]
Tsozué, D., Nghonda, J. P., Tematio, P., & Basga, S. D. (2019). Changes in Soil Properties and Soil Organic Carbon Stocks along an Elevation Gradient at Mount Bambouto, Central Africa. Catena, 175, 251-262. https://doi.org/10.1016/j.catena.2018.12.028
[28]
UNEP (2019). New UN Decade on Ecosystem Restoration Offers Unparalleled Opportunity for Job Creation, Food Security and Addressing Climate Change.
[29]
Yemefack, M., Rossiter, D. G., & Jetten, V. G. (2006). Empirical Modelling of Soil Dynamics along a Chronosequence of Shifting Cultivation Systems in Southern Cameroon. Geoderma, 133, 380-397. https://doi.org/10.1016/j.geoderma.2005.08.003