|
具交叉扩散和弱Allee效应的反应扩散方程图灵斑图研究
|
Abstract:
本文提出了一类具有交叉扩散的反应扩散方程,用于研究一类具有弱Allee效应的捕食食饵反应扩散模型在交叉扩散驱动下的图灵斑图动力学现象。研究发现,交叉扩散是该模型产生图灵斑图必不可少的条件,如果没有交叉扩散,则模型不会发生图灵失稳。同时,通过选择不同参数,我们发现模型的斑图现象十分丰富,可以出现点斑图、点–线混合斑图、线斑图三种类型。
This article proposes a class of reaction diffusion equations with cross diffusion to study the Turing pattern dynamics of a predator-prey reaction diffusion model with weak Allee effect driven by cross diffusion. Research has found that cross diffusion is an essential condition for the model to generate Turing patterns. Without cross diffusion, the model will not experience Turing instability. At the same time, by selecting different parameters, we found that the pattern phenomenon of the model is very rich, which can appear in three types: spots pattern, spots-stripes mixed pattern and stripes pattern.
[1] | Lotka, A.J. (1925) Elements of Physical Biology. Williams and Wilkins, New Work. |
[2] | Volterra, V. (1926) Variazionie fluttuazioni del numero dindividui in specie animali conviventi. Memorie Accad. d. L. Roma, 2, 31-113. https://zbmath.org/52.0450.06 |
[3] | Scaramangas, A. and Broom, M. (2022) Aposematic Signalling in Prey-Predator Systems: Determining Evolutionary Stability When Prey Populations Consist of a Single Species. Journal of Mathematical Biology, 85, Article No. 13.
https://doi.org/10.1007/s00285-022-01762-y |
[4] | Nadim, S.S., Samanta, S., Pal, N., et al. (2022) Impact of Preda-tor Signals on the Stability of a Predator-Prey System: A Z-Control Approach. Differential Equations and Dynamical Systems, 30, 451-467.
https://doi.org/10.1007/s00285-022-01762-y |
[5] | Shi, D.Y. and Zhang, S.H. (2022) Unconditional Superconver-gence of the Fully-Discrete Schemes for Nonlinearprey-Predator Model. Applied Numerical Mathematics, 172, 118-132. https://doi.org/10.1016/j.apnum.2021.10.002 |
[6] | Qi, H.K., Meng, X.Z., Hayat, T. and Hobiny, A. (2022) Station-ary Distribution of a Stochastic Predator-Prey Model with Hunting Cooperation. Applied Mathematics Letters, 124, 107662. https://doi.org/10.1016/j.aml.2021.107662 |
[7] | Lu, C. (2022) Dynamical Analysis and Numerical Simula-tions on a Crowley-Martin Predator-Prey Model in Stochastic Environment. Applied Mathematics and Computation, 413, 126641. https://doi.org/10.1016/j.amc.2021.126641 |
[8] | 张晓漩. 食饵受额外捕食影响的捕食-食饵模型的动力学[D]: [硕士学位论文]. 广州: 广州大学, 2022.
https://doi.org/10.27040/d.cnki.ggzdu.2022.000458 |
[9] | Dey, S., Banerjee, M. and Ghorai, S. (2022) Analytical Detection of Stationary Turing Pattern in a Predator-Prey System with Generalist Predator. Mathematical Modelling of Natural Phenomena, 17, Article No. 33.
https://doi.org/10.1051/mmnp/2022032 |
[10] | Arancibia-Ibarra, C., Bode, M., Flores, J., Pettet, G. and van Heijster, P. (2021) Turing Patterns in a Diffusive Holling-Tanner Predator-Prey Model with an Alternative Food Source for the Predator. Communications in Nonlinear Science and Numerical Simulation, 99, 105802. https://doi.org/10.1016/j.cnsns.2021.105802 |
[11] | Hu, G.P. and Feng, Z.S. (2020) Turing Instability and Pattern Formation in a Strongly Coupled Diffusive Predator-Prey System. International Journal of Bifurcation and Chaos, 30, 2030020. https://doi.org/10.1142/S0218127420300207 |
[12] | Tang, X.S. and Song, Y.L. (2015) Cross-Diffusion Induced Spatiotemporal Patterns in a Predator-Prey Model with Herd Behavior. Nonlinear Analysis: Real World Applica-tions, 24, 36-49. https://doi.org/10.1016/j.nonrwa.2014.12.006 |