全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

球壳区域主特征值最小化问题研究
Research on the Minimization Problem of Principal Eigenvalue in Spherical Shell Domain

DOI: 10.12677/AAM.2023.129376, PP. 3826-3833

Keywords: 主特征值,最优化,球壳区域
Principal Eigenvalue
, Optimization, Spherical Shell Domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要考虑Neumann边界条件下Laplace算子的不定权主特征值问题。在权函数为变号且有界的限制下,我们研究了球壳区域内的主特征值最小化问题,证明了其存在性和权函数的bang-bang分布。这些结果在生物种群资源和优化问题中有重要应用。
In this paper, we mainly consider the principal eigenvalue problem of Laplace operator with indefi-nite weights under Neumann boundary condition. The existence and bang-bang distribution of the minimization of the principal eigenvalue in the spherical shell region are proved under the con-straint that weight function is sign-changing and bounded. These results have important applica-tions in biological population resources and optimization problems.

References

[1]  Cantrell, R.-S. and Cosner, C. (1989) Diffusive Logistic Equations with Indefinite Weights: Population Models in Dis-rupted Environments. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 112, 293-318.
https://doi.org/10.1017/S030821050001876X
[2]  Lou, Y. and Yanagida, E. (2006) Minimization of the Principal Eigenvalue for an Elliptic Boundary Value Problem with Indefinite Weight, and Applications to Population Dynamics. Japan Journal of Industrial and Applied Mathematics, 23, Article No. 275.
https://doi.org/10.1007/BF03167595
[3]  Bocea, M. and Mih?ilescu, M. (2018) Minimization Problems for Inho-mogeneous Rayleigh Quotients. Communications in Contemporary Mathematics, 20, 1750074.
https://doi.org/10.1142/S0219199717500742
[4]  Mazari, I., Nadin, G. and Privat, Y. (2022) Chapter 12—Some Challenging Optimization Problems for Logistic Diffusive Equations and Their Numerical Modeling. Handbook of Nu-merical Analysis, 23, 401-426.
https://doi.org/10.1016/bs.hna.2021.12.012
[5]  Mazari, I., Nadin, G. and Privat, Y. (2022) Shape Optimization of a Weighted Two-Phase Dirichlet Eigenvalue. Archive for Rational Mechanics and Analysis, 243, 95-137.
https://doi.org/10.1007/s00205-021-01726-4
[6]  Anedda, C. and Cuccu, F. (2020) Optimal Location of Resources and Steiner Symmetry in a Population Dynamics Model in Heterogeneous Environments. Annales Fennici Mathematici, 47, 305-324.
https://doi.org/10.54330/afm.113547
[7]  Derlet, A., Gossez, J.-P. and Taká?, P. (2010) Minimization of Eigen-values for a Quasilinear Elliptic Neumann Problem with Indefinite Weight. Journal of Mathematical Analysis and Appli-cations, 371, 69-79.
https://doi.org/10.1016/j.jmaa.2010.03.068
[8]  Jha, K. and Porru, G. (2011) Minimization of the Principal Eigen-value under Neumann Boundary Conditions. Numerical Functional Analysis and Optimization, 32, 1146-1165.
https://doi.org/10.1080/01630563.2011.592244
[9]  Hintermüller, M., Kao, C.-Y. and Laurain, A. (2012) Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions. Applied Mathematics and Optimization, 65, 111-146.
https://doi.org/10.1007/s00245-011-9153-x
[10]  Kao, C.-Y., Lou, Y. and Yanagida, E. (2008) Principal Eigenvalue for an Elliptic Problem with Indefinite Weight on Cylindrical Domains. Mathematical Biosciences and Engineering, 5, 315-335.
https://doi.org/10.3934/mbe.2008.5.315
[11]  Lamboley, J., Laurain, A., Nadin, G. and Privat, Y. (2016) Properties of Optimizers of the Principal Eigenvalue with Indefinite Weight and Robin Conditions. Calculus of Variations and Partial Differential Equations, 55, Article No. 144.
https://doi.org/10.1007/s00526-016-1084-6
[12]  Birgin, E-G., Fernandez, L., Haeser, G. and Laurain, A. (2023) Optimization of the First Dirichlet Laplacian Eigenvalue with Respect to a Union of Balls. Journal of Geometric Analysis, 33, Article No. 184.
https://doi.org/10.1007/s12220-023-01241-w
[13]  Ferreri, L. and Verzini, G. (2022) Asymptotic Properties of an Optimal Principal Eigenvalue with Spherical Weight and Dirichlet Boundary Conditions. Nonlinear Analysis, 224, 113103.
https://doi.org/10.1016/j.na.2022.113103
[14]  Mazzoleni, D., Pellacci, B. and Verzini, G. (2020) Asymp-totic Spherical Shapes in Some Spectral Optimization Problems. Journal de Mathématiques Pures et Appliquées, 135, 256-283.
https://doi.org/10.1016/j.matpur.2019.10.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133