全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于退化抛物方程的期权漂移率反问题
Inverse Problem of Option Drift Rate Based on Degenerate Parabolic Equations

DOI: 10.12677/AAM.2023.129375, PP. 3814-3825

Keywords: 漂移率,反问题,最优控制,存在性,唯一性
Rrift Rate
, Inverse Problem, Optimal Control, Existence, Uniqueness

Full-Text   Cite this paper   Add to My Lib

Abstract:

在股票价格演化过程中,漂移率是一个重要的参数,对相应的期权定价具有显著影响。本文研究了一个反问题,即通过期权的当前市场价格来恢复漂移函数,由于我们的数学模型在无穷大时不趋于零,这与传统的波动率反问题不同,可能会给理论分析和数值计算带来显著困难。为了克服这一困难,我们应用线性化方法并引入变量替换,将原始问题转化为退化抛物型方程在有界区域上的逆问题。通过解决这个逆问题,我们能够恢复未知的漂移率并解决人工截断带来的误差。基于最优控制框架,我们将原始问题转化为一个优化问题,并证明了极小值的存在性。在推导出必要条件之后,我们还证明了极小值的唯一性和稳定性。
In the process of stock price evolution, the drift rate is an important parameter that significantly in-fluences the pricing of corresponding options. In this paper, we investigate a reverse problem, which involves recovering the drift function from the current market prices of options. Due to the fact that our mathematical model does not tend to zero as it approaches infinity, unlike the tradi-tional volatility inverse problem, this poses considerable challenges for theoretical analysis and numerical computations. To overcome this difficulty, we employ a linearization method and intro-duce variable substitutions to transform the original problem into an inverse problem of degener-ate parabolic equations on a bounded domain. By solving this inverse problem, we are able to re-cover the unknown drift rate and address the limitations caused by artificial truncation. Based on an optimal control framework, we formulate the original problem as an optimization problem and demonstrate the existence of a minimum. After deriving the necessary conditions, we establish the uniqueness and stability of the minimum.

References

[1]  Bukharova, T.I., Kamynin, V.L. and Tonkikh, A.P. (2019) On In-verse Problem of Determination of the Coefficient in Strongly Degenerate Parabolic Equation. Journal of Physics: Con-ference Series, 1205, Article ID: 012008.
https://doi.org/10.1088/1742-6596/1205/1/012008
[2]  Kamynin, V.L. (2020) The Inverse Problem of Simultane-ous Determination of the Two Time-Dependent Lower Coefficients in a Nondivergent Parabolic Equation in the Plane. Mathematical Notes, 107, 93-104.
https://doi.org/10.1134/S0001434620010095
[3]  Cannarsa, P., Tort, J. and Yamamoto, M. (2010) Determination of Source Terms in a Degenerate Parabolic Equation. Inverse Problems, 26, Article ID: 105003.
https://doi.org/10.1088/0266-5611/26/10/105003
[4]  Alabau-Boussouira, F., Cannarsa, P. and Fragnelli, G. (2006) Carleman Estimates for Degenerate Parabolic Operators with Applications to Null Controllability. Journal of Evolution Equations, 6, 161-204.
https://doi.org/10.1007/s00028-006-0222-6
[5]  Yimamu, Y., Deng, Z.C. and Yang, L. (2022) An Inverse Volatil-ity Problem in a Degenerate Parabolic Equation in a Bounded Domain. AIMS Mathematics, 7, 237-266.
https://doi.org/10.3934/math.20221056
[6]  Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Mathematical Finance, 81, 637-654.
https://doi.org/10.1086/260062
[7]  Dupire, B. (1994) Pricing with a Smile. Risk, 7, 1-10.
[8]  Bouchouev, I. and Isakov, V. (1999) Uniqueness, Stability and Numerical Methods for the Inverse Problem That Arises in Financial Markets. Inverse Problems, 15, R95.
https://doi.org/10.1088/0266-5611/15/3/201
[9]  Jiang, L.S., Chen, Q.H., Wang, L.J. and Zhang, J.E. (2003) A New Well-Posed Algorithm to Recover Implied Local Volatility. Quantitative Finance, 3, 451-457.
https://doi.org/10.1088/1469-7688/3/6/304
[10]  Jiang, L.S. and Bian, B.J. (2005) Identifying the Principal Coeffi-cient of Parabolic Equations with Non-Divergent Form. Journal of Physics: Conference Series, 12, 58-65.
https://doi.org/10.1088/1742-6596/12/1/006
[11]  Touchouev, I. and Isakov, V. (1997) The Inverse Problem of Op-tion Pricing. Inverse Problems, 5, 7-11.
https://doi.org/10.1088/0266-5611/13/5/001
[12]  De Cezaro, A. and Zubelli, J. (2013) The Tangential Cone Condi-tion for the Iterative Calibration of Local Volatility Surfaces. IMA Journal of Applied Mathematics, 1, 212-232.
https://doi.org/10.1093/imamat/hxt037
[13]  Deng, Z.C. and Yang, L. (2019) An Inverse Volatility Problem of Fi-nancial Products Linked with Gold Price. Bulletin of the Iranian Mathematical Society, 45, 1243-1267.
https://doi.org/10.1007/s41980-018-00196-x
[14]  Isakov, V. (2017) Recovery of Time-Dependent Volatility Coef-ficient by Linearization. Evolution Equations and Control Theory, 3, 119-134.
https://doi.org/10.3934/eect.2014.3.119
[15]  Deng, Z.C., Hon, Y.C. and Isakov, V. (2016) Recovery of Time-Dependent Volatility in Option Pricing Model. Inverse Problems, 32, Article ID: 115010.
https://doi.org/10.1088/0266-5611/32/11/115010
[16]  Xing, Y., Wu, X., Zhao, L. and Zhao, P. (2020) Recovery of Local Volatility Surface Using Deep Learning. Quantitative Finance, 20, 213-230.
[17]  Ota, Y. and Kaji, S. (2016) Re-construction of Local Volatility for the Binary Option Model. Journal of Inverse and Ill-Posed Problems, 24, 727-741.
https://doi.org/10.1515/jiip-2013-0051
[18]  Yang, L., Liu, Y. and Deng, Z.C. (2020) Multi-Parameters Identifica-tion Problem for a Degenerate Parabolic Equation. Journal of Computational and Applied Mathematics, 366, Article ID: 112422.
https://doi.org/10.1016/j.cam.2019.112422
[19]  Li, R.R. and Li, Z.Y. (2021) Identifying Unknown Source in De-generate Parabolic Equation from Final Observation. Inverse Problems in Science and Engineering, 29, 1012-1031.
https://doi.org/10.1080/17415977.2020.1817005
[20]  姜礼尚. 期权定价的数学模型和方法[M]. 第2版. 北京: 高等教育出版社, 2008.
[21]  Cannarsa, P., Doubova, A. and Yamamoto, M. (2021) In-verse Problem of Reconstruction of Degenerate Diffusion Coefficient in a Parabolic Equation. Inverse Problems, 37, Ar-ticle ID: 125002.
https://doi.org/10.1088/1361-6420/ac274b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133