全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

信息行为领域中脑电技术的应用与展望
The Application and Prospect of EEG Technology in the Field of Information Behavior

DOI: 10.12677/CSA.2023.139161, PP. 1621-1631

Keywords: 信息行为,脑电图,脑电技术,认知神经科学,应用展望
Information Behavior
, Electroencephalography, EEG Technology, Cognitive Neuroscience, Application Prospect

Full-Text   Cite this paper   Add to My Lib

Abstract:

[目的/意义]揭示目前在信息行为领域中脑电技术的应用现状,拓展学科边界,为信息行为领域的脑电技术应用提供思路。[研究设计/方法]本研究系统梳理了Google学术建库至今信息行为领域中应用脑电技术的65篇实证研究,分析、整理其在信息行为领域的应用现状,并揭示其对信息行为发展的作用。[结论/发现]本研究从65篇文献编码结果发现,近年来,信息行为领域中脑电技术的应用研究的文献显著增加,有三个研究重点,一是探讨界面信息布局对用户认知负荷和搜索效率的影响;二是关于信息安全领域的认知行为;三是人类决策过程中的从众机制。[创新/价值]展望了信息行为领域中脑电技术的应用前景,并讨论了信息行为领域应用认知神经科学工具未来的发展方向及面临的挑战,为信息行为领域中脑电技术的进一步应用提供参考。
[Purpose/Significance] To reveal the current application status of EEG technology in the field of information behavior, expand the discipline boundary, and provide ideas for the application of EEG technology in the field of information behavior. [Design/Methodology] This study systematically sorted out 65 empirical studies on the application of EEG technology in the field of information behavior of Google, analyzed and sorted out its application status in the field of information behavior, and revealed its role in the development of information behavior. [Findings/Conclusion] According to 65 articles, in recent years, the application of EEG technology in the field of information behavior has increased significantly, with three research points, firstly, the impact of interface information layout on cognitive load and search efficiency; the second is the cognitive behavior in the field of information security; the last one is the conformity mechanism in human decision-making process. [Originality/Value] This paper discusses the application prospect of EEG technology in the field of information behavior, and discusses the future development direction and challenges of cognitive neuroscience tools in the field of information behavior, which provides a reference for the further application of EEG technology in the field of information behavior.

References

[1]  Pettigrew, K.E., Fidel, R. and Bruce, H. (2001) Conceptual Frameworks in Information Behavior. Annual Review of Information Sci-ence and Technology (ARIST), 35, 43-78.
[2]  李佳, 邵迪. 信息行为研究现状及发展述评[J]. 现代情报, 2022, 42(8): 168-177.
[3]  金晓玲, 于晓宇, 周中允, 等. 信息系统研究中脑电技术的应用: 现状与展望[J]. 工业工程与管理, 2019, 24(6): 1-7.
[4]  王琳, 熊颖, 江雨薇, 等. 眼动技术方法在图书情报学中的应用研究述评[J]. 数字图书馆论坛, 2020(8): 63-70.
[5]  De Vico Fallani, F., Nicosia, V., Sinatra, R., et al. (2010) Defecting or Not Defecting: How to “Read” Human Behavior during Cooperative Games by EEG Measurements. PLOS ONE, 5, e14187.
https://doi.org/10.1371/journal.pone.0014187
[6]  庄宁. 基于脑电的情绪加工与识别技术研究[D]: [博士学位论文]. 郑州: 战略支援部队信息工程大学, 2020.
[7]  Songsamoe, S., Saengwong-ngam, R., Koomhin, P., et al. (2019) Understanding Consumer Physiological and Emotional Responses to food Products Using Electroencephalography (EEG). Trends in Food Science & Technology, 93, 167-173.
https://doi.org/10.1016/j.tifs.2019.09.018
[8]  Fu, Z., Wu, D.J., Ross, I., et al. (2019) Single-Neuron Correlates of Error Monitoring and Post-Error Adjustments in Human Medial Frontal Cortex. Neuron, 101, 165-177.
https://doi.org/10.1016/j.neuron.2018.11.016
[9]  Lafon, B. (2017) Low Frequency Transcranial Electrical Stimulation Does Not Entrain Sleep Rhythms Measured by Human Intracranial Recordings. Nature Communications, 8, Article No. 1199.
https://doi.org/10.1038/s41467-017-01045-x
[10]  Bleichner, M.G. and Debener, S. (2017) Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG. Frontiers in Human Neuroscience, 11, Article No. 163.
https://doi.org/10.3389/fnhum.2017.00163
[11]  倪华. 用户专利检索的眼动和脑电行为特征及其在优化结果排序中的应用研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2018.
[12]  Karaka, C., et al. (1999) Are Cognitive Processes Manifested in Event-Related Gamma, Alpha, Theta and Delta Oscillations in the EEG? Neuroscience Letters, 259, 165-168.
https://doi.org/10.1016/S0304-3940(98)00934-3
[13]  Krakowska, M. (2020) Affective Factors in Human Information Behavior: A Conceptual Analysis of Interdisciplinary Research on Information Behavior. Zagadnienia Informacji Naukowej-Studia Informacyjne, 58, 75-95.
https://doi.org/10.36702/zin.725
[14]  Al-Samarraie, H., Eldenfria, A., Zaqout, F., et al. (2019) How Reading in Single- and Mul-tiple-Column Types Influence Our Cognitive Load: An EEG Study. The Electronic Library, 37, 593-606.
https://doi.org/10.1108/EL-01-2019-0006
[15]  刘晓君, 李丽丽, 王萌萌, 等. 跨学科知识的交叉与融合机制研究——以脑电技术为例[J]. 科技管理研究, 2022, 42(15): 240-248.
[16]  王翠翠. 基于决策神经科学的从众与反从众行为研究: 对比财产类决策和健康类决策情景[D]: [博士学位论文]. 杭州: 浙江大学, 2014.
[17]  Kaplan, S.E. and Reckers, P.M. (1989) An Examination of Information Search during Initial Audit Planning. Accounting, Organizations and Society, 14, 539-550.
https://doi.org/10.1016/0361-3682(89)90017-2
[18]  Brown, M.E. (1991) A General Model of Information-Seeking Behavior. Proceedings of the ASIS Annual Meeting, 54th Annual Meeting, Washington, D.C., 27-31 October, 1991, 9-14.
[19]  黄崑, 郑明煊, 罗士超, 等. 探索式搜索中基于面部表情识别的用户情绪及影响因素研究[J]. 图书情报工作, 2022, 66(5): 93-104.
[20]  黄崑, 袁心, 李蕾, 等. 情感负荷视角下协作检索中用户消极情绪感知及其影响因素研究[J]. 图书情报知识, 2020(1): 42-52.
[21]  夏立新, 周鼎, 叶光辉, 等. 情感负荷视角下探索式搜索学习效果的影响因素[J]. 图书情报知识, 2020(4): 133-141.
[22]  Savolainen, R. (2015) The Interplay of Affective and Cognitive Factors in Information Seeking and Use: Comparing Kuhlthau’s and Nahl’s Models. Journal of Documentation, 71, 175-197.
https://doi.org/10.1108/JD-10-2013-0134
[23]  林志敏. 基于脑电的图像检索技术[D]: [硕士学位论文]. 郑州: 解放军信息工程大学, 2017.
[24]  刘洪霞. 基于脑波的情感图像检索的研究[D]: [硕士学位论文]. 上海: 东华大学, 2012.
[25]  Zhang, X., Wen, D., Liang, J., et al. (2017) How the Public Uses Social Media Wechat to Obtain Health Information in China: A Survey Study. BMC Medical Informatics and Decision Making, 17, 71-79.
https://doi.org/10.1186/s12911-017-0470-0
[26]  Nagler, R.H., Vogel, R.I., Gollust, S.E., et al. (2022) Effects of Prior Exposure to Conflicting Health Information on Responses to Subsequent Unrelated Health Messages: Results from a Population-Based Longitu-dinal Experiment. Annals of Behavioral Medicine, 56, 498-511.
https://doi.org/10.1093/abm/kaab069
[27]  Zhou, L., Zhang, D., Yang, C.C., et al. (2018) Harnessing Social Media for Health Information Management. Electronic Commerce Research and Applica-tions, 27, 139-151.
https://doi.org/10.1016/j.elerap.2017.12.003
[28]  宋士杰, 齐云飞, 赵宇翔, 等. 冲突性健康信息对用户健康信息搜寻的影响: 基于不确定性视角的探究[J]. 图书情报工作, 2021, 65(11): 24-32.
[29]  Gomes, P.V., Marques, A., et al. (2020) The Use of Portable EEG Devices in Development of Immersive Virtual Reality Environments for Converting Emotional States into Specific Commands. Proceedings, 54, Article No. 43.
[30]  Ndel, I.A., Line, M.B. and Jaatun, M.G. (2014) Information Security Incident Management: Current Practice as Reported in the Literature. Computers & Security, 45, 42-57.
https://doi.org/10.1016/j.cose.2014.05.003
[31]  Li, Y., Song, L. and Zeng, Y. (2019) Research on Information Security and Pri-vacy Protection Model Based on Consumer Behavior in Big Data Environment. Concurrency and Computation: Practice and Experi-ence, 31, e4881.
https://doi.org/10.1002/cpe.4881
[32]  Ophoff, J. and Dietz, F. (2019) Using Gamification to Improve Information Security Be-havior: A Password Strength Experiment. Springer, Berlin.
https://doi.org/10.1007/978-3-030-23451-5_12
[33]  Anderson, C.L. and Agarwal, R. (2010) Practicing Safe Computing: A Multimethod Empirical Examination of Home Computer User Security Behav-ioral Intentions. MIS Quarterly, 34, 613-643.
https://doi.org/10.2307/25750694
[34]  Dimoka, A., Davis, F.D., Gupta, A., et al. (2012) On the Use of Neurophysiological Tools in IS Research: Developing a Research Agenda for NeuroIS. MIS Quarterly, 36, 679-702.
https://doi.org/10.2307/41703475
[35]  Vance, A., Anderson, B.B., Kirwan, C.B., et al. (2014) Using Measures of Risk Perception to Predict Information Security Behavior: Insights from Electroencephalography (EEG). Journal of the Association for In-formation Systems, 15, Article No. 2.
https://doi.org/10.17705/1jais.00375
[36]  Han, D., Dai, Y., Han, T., et al. (2015) Explore Awareness of Information Security: Insights from Cognitive Neuromechanism. Computational Intelligence and Neuroscience, 2015, Article ID: 762403.
https://doi.org/10.1155/2015/762403
[37]  Trautmann-Lengsfeld, S.A. and Herrmann, C.S. (2013) EEG Reveals an Early Influ-ence of Social Conformity on Visual Processing in Group Pressure Situations. Social Neuroscience, 8, 75-89.
https://doi.org/10.1080/17470919.2012.742927
[38]  Xie, Y., Chen, M., Lai, H., et al. (2016) Neural Basis of Two Kinds of So-cial Influence: Obedience and Conformity. Frontiers in Human Neuroscience, 10, Article No. 51.
https://doi.org/10.3389/fnhum.2016.00051
[39]  Yu, R. and Sun, S. (2013) To Conform or Not to Conform: Spontaneous Con-formity Diminishes the Sensitivity to Monetary Outcomes. PLOS ONE, 8, e64530.
https://doi.org/10.1371/journal.pone.0064530
[40]  孙海霞. 国外健康信息规避行为研究综述[J]. 图书情报工作, 2021, 65(9): 138-150.
[41]  侯冠华. 数字图书信息界面布局影响老年人信息检索交互绩效的眼动实证研究[J]. 国家图书馆学刊, 2020, 29(5): 21-32.
[42]  Essa, I.A. and Pentland, A.P. (1997) Coding, Analysis, Interpretation, and Recognition of Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 757-763.
https://doi.org/10.1109/34.598232
[43]  蒋丹宁, 蔡莲红. 基于语音声学特征的情感信息识别[J]. 清华大学学报(自然科学版), 2006, 46(1): 86-89.
[44]  Stemmler, G., Heldmann, M., Pauls, C.A., et al. (2001) Constraints for Emotion Specificity in Fear and Anger: The Context Counts. Psychophysiology, 38, 275-291.
https://doi.org/10.1111/1469-8986.3820275
[45]  Si, Y., Li, F., Duan, K., et al. (2020) Predicting Individual Decision-Making Responses Based on Single-Trial EEG. NeuroImage, 206, Article ID: 116333.
https://doi.org/10.1016/j.neuroimage.2019.116333
[46]  Minnery, B.S. and Fine, M.S. (2009) Feature Neuroscience and the Fu-ture of Human-Computer Interaction. Interactions, 16, 70-75.
https://doi.org/10.1145/1487632.1487649
[47]  Parry, K., Cohen, M. and Bhattacharya, S. (2016) Rise of the Machines: A Critical Consideration of Automated Leadership Decision Making in Organiza-tions. Group & Organization Management, 41, 571-594.
https://doi.org/10.1177/1059601116643442
[48]  Dimoka, A., Pavlou, P.A. and Davis, F.D. (2011) Research Commen-tary—NeuroIS: The Potential of Cognitive Neuroscience for Information Systems Research. Information Systems Research, 22, 687-702.
https://doi.org/10.1287/isre.1100.0284
[49]  Slagter, H.A. and Bouwer, F.L. (2021) Qualitative versus Quantitative Individual Differences in Cognitive Neuroscience. Journal of Cognition, 4, Article No. 49.
https://doi.org/10.5334/joc.170
[50]  Lopatovska, I. and Arapakis, I. (2011) Theories, Methods and Current Research on Emotions in Library and Information Science, Information Re-trieval and Human-Computer Interaction. Information Processing & Management, 47, 575-592.
https://doi.org/10.1016/j.ipm.2010.09.001
[51]  Li, X., Hu, B., Zhu, T., et al. (2009) Towards Affective Learning with an EEG Feedback Approach. Proceedings of the 1st ACM International Workshop on Multimedia Technologies for Distance Learning, Beijing, 23 October 2009, 33-38.
https://doi.org/10.1145/1631111.1631118
[52]  Aldayel, M., Ykhlef, M. and Al-Nafjan, A. (2020) Deep Learning for EEG-Based Preference Classification in Neuromarketing. Applied Sciences, 10, Article No. 1525.
https://doi.org/10.3390/app10041525
[53]  Turner, B.M., Rodriguez, C.A., Norcia, T.M., et al. (2016) Why More Is Better: Sim-ultaneous Modeling of EEG, fMRI, and Behavioral Data. NeuroImage, 128, 96-115.
https://doi.org/10.1016/j.neuroimage.2015.12.030
[54]  Zadelaar, J.N., Weeda, W.D., Waldorp, L.J., et al. (2019) Are Individual Differences Quantitative or Qualitative? An Integrated Behavioral and fMRI MIMIC Approach. NeuroImage, 202, Article ID: 116058.
https://doi.org/10.1016/j.neuroimage.2019.116058
[55]  Goodhew, S.C. and Edwards, M. (2019) Translating Experimental Para-digms into Individual-Differences Research: Contributions, Challenges, and Practical Recommendations. Consciousness and Cognition, 69, 14-25.
https://doi.org/10.1016/j.concog.2019.01.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133