全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

近视青少年儿童配戴角膜塑形镜后角膜生物力学的变化与短期塑形效果的相关性研究
Changes of Corneal Biomechanics in Myopic Children after Wearing Orthokeratology Lenses and the Correlation with the Short-Term Shaping Effect

DOI: 10.12677/HJO.2023.123018, PP. 126-138

Keywords: 近视,角膜塑形镜,角膜生物力学
Myopia
, Orthokeratology Lenses, Corneal Biomechanic

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:观察低度、中度近视青少年儿童佩戴角膜塑形镜后早期的角膜生物力学的变化规律及其与早期角膜塑形效果的相关性。方法:本研究为前瞻性临床研究。收集汕头国际眼科中心29名近视青少年儿童,选择右眼入组,其中男性12例,女性17例,年龄(11.72 ± 2.33)岁。将所有样本对象根据等效球镜度数分为低度近视组(低于?3.0 D)和中度近视组(?3.0 D~?6.0 D),其中低度近视组14人,中度近视组15人。使用Corvis ST测量3次,取平均值进行后续分析。通过角膜地形图获得屈光力数据。采用单因素重复测量方差分析比较各随访时间点的角膜生物力学指标,采用Pearson线性相关分析基线资料、Corvis参数与角膜顶点屈光力的变化(Change in corneal aPical refractive Power, CARP)、角膜相对屈光力总和(Summed corneal power change, SCPC)的相关性。结果:两组患者配戴角膜塑形镜后1周、1月的视力无显著差异(P > 0.05),裸眼视力均达到0.1 LogMAR及以上。戴角膜塑形镜1周时,低度近视组CARP、SCPC分别为2.36 ± 0.92 D、8.56 ± 5.98 D?mm,中度近视组CARP、SCPC分别为3.43 ± 0.77 D、13.73 ± 4.26 D?mm,1周与1月时两组内的CARP、SCPC无显著差异(P > 0.05)。低度组戴角膜塑形镜1周、1月的PD、IR、CBI均较戴前升高(P < 0.05),SPA、ARTH、IOP、bIOP均较戴前降低(P < 0.05),戴镜1周与1月时对比均无显著差异(P > 0.05),中度组戴角膜塑形镜1周、1月CBI均较戴前升高(P均 < 0.05),RHC、ARTH、CCT均较戴前降低(P < 0.05),RHC、ARTH、CCT在戴镜1周与1月时对比无显著差异(P均> 0.05)。两组患者的戴角膜塑形镜1周的SCPC与戴镜前的L1A、RHC正相关(r = 0.557, P = 0.002; r =0.369, P = 0.049)、IR负相关(r = ?0.419, P = 0.024),戴角膜塑形镜1月CARP、SCPC均与戴镜前等效球镜度负相关(r = 0.6, P < 0.01; r = ?0.43, P = 0.02)。结论:低、中度近视儿童配戴角膜塑形镜后CARP、SCPC的变化主要发生在1周内,该时期伴随着角膜生物力学特性的降低,戴镜1周至1个月时角膜生物力学特性保持相对稳定。角膜生物力学L1A、DR、IR参数对角膜塑形镜的早期塑形效果有影响。
Objective: To observe the changes in early corneal biomechanics and their correlation with early corneal shaping effects in adolescents and children with low to moderate myopia after wearing orthokeratology lenses. Methods: This study is a clinical study prospectively. 29 nearsighted adolescents and children who visited the Joint Shantou International Eye Center from were selected, and their right eyes were included in the group. Among them, 12 were males and 17 were females, aged (11.72 ± 2.33) years old. All sample subjects were divided into low myopia group (lower than ?3.0 D) and moderate myopia group (?3.0 D~?6.0 D) based on Spherical Equivalent Refraction, with 14 individuals in the low myopia group and 15 individuals in the moderate myopia group. Measure 3 times using Corvis ST and take the average for subsequent analysis. Obtain refractive power data through corneal topography, and subtract the refractive power at the vertex of the cornea before wearing the lens from the refractive power at this point after wearing the lens to obtain the change in corneal apical refractive power (CARP). SCPC (summed corneal power change) is defined as the sum of refractive power changes relative to the corneal apex within a diameter range of 0.5 mm to 7.2 mm. Single factor repeated measurement analysis of variance was used to compare corneal biomechanical indicators at various follow-up time points. We used the Pearson linear

References

[1]  Santodomingo-Rubido, J., Villa-Collar, C., Gilmartin, B. and Gutiérrez-Ortega, R. (2012) Myopia Control with Orthokeratology Contact Lenses in Spain: Refractive and Biometric Changes. Investigative Ophthalmology & Visual Science, 53, 5060-5065.
https://doi.org/10.1167/iovs.11-8005
[2]  Alharbi, A. and Swarbrick, H.A. (2003) The Effects of Overnight Orthokeratology Lens Wear on Corneal Thickness. Investigative Ophthalmology & Visual Science, 44, 2518-2523.
https://doi.org/10.1167/iovs.02-0680
[3]  Villa-Collar, C., González-Méijome, J.M., Queirós, A. and Jorge, J. (2009) Short-Term Corneal Response to Corneal Refractive Therapy for Different Refractive Targets. Cornea, 28, 311-316.
https://doi.org/10.1097/ICO.0b013e31818a7d80
[4]  Chong, J. and Dupps Jr., W.J. (2021) Corneal Biomechanics: Measurement and Structural Correlations. Experimental Eye Research, 205, Article ID: 108508.
https://doi.org/10.1016/j.exer.2021.108508
[5]  Ma, J., Wang, Y., Wei. P. and Jhanji, V. (2018) Biomechanics and Structure of the Cornea: Implications and Association with Corneal Disorders. Survey of Ophthalmology, 63, 851-861.
https://doi.org/10.1016/j.survophthal.2018.05.004
[6]  Queiros, A., Gonzalez-Meijome, J.M., Jorge, J., Villa-Collar, C. and Gutiérrez, A.R. (2010) Peripheral Refraction in Myopic Patients after Orthokeratology. Optometry and Vision Science, 87, 323-329.
https://doi.org/10.1097/OPX.0b013e3181d951f7
[7]  Kang, P. and Swarbrick, H. (2011) Peripheral Refraction in Myopic Children Wearing Orthokeratology and Gas-Permeable Lenses. Optometry and Vision Science, 88, 476-482.
https://doi.org/10.1097/OPX.0b013e31820f16fb
[8]  Charman, W.N., Mountford, J., Atchison, D.A. and Markwell, E.L. (2006) Peripheral Refraction in Orthokeratology Patients. Optometry and Vision Science, 83, 641-648.
https://doi.org/10.1097/01.opx.0000232840.66716.af
[9]  Zhong, Y., Chen, Z., Xue, F., Miao, H. and Zhou, X. (2015) Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship with 2-Year Axial Length Change. Investigative Ophthalmology & Visual Science, 56, 4514-4519.
https://doi.org/10.1167/iovs.14-13935
[10]  Li, X., Xu, J., Hong, J. and Yao, J. (2022) The Relationship between Corneal Biomechanical Parameters and Treatment Outcomes of Orthokeratology Lenses. BMC Ophthalmology, 22, Article No. 262.
https://doi.org/10.1186/s12886-022-02480-1
[11]  Xiang, K., Chen, J., Zhao, W., Zhu, Z., Ding, L., Bulloch, G., Du, L., Xu, X., Zhu, M. and He, X. (2023) Changes of Corneal Biomechanics in Children Using Orthokeratology and Their Roles in Predicting Axial Length Progression—A Prospective 2-Year Study. Acta Ophthalmologica.
https://doi.org/10.1111/aos.15662
[12]  Roberts, C.J. and Dupps Jr., W.J. (2014) Biomechanics of Corneal Ectasia and Biomechanical Treatments. Journal of Cataract & Refractive Surgery, 40, 991-998.
https://doi.org/10.1016/j.jcrs.2014.04.013
[13]  张菊, 李晓晓, 刘明娜, 等. 儿童配戴角膜塑形镜后早期角膜生物力学变化特征[J]. 中华眼视光学与视觉科学杂志, 2022, 24(4): 248-254.
[14]  毛欣杰, 黄橙赤, 陈琳, 吕帆. 角膜塑形术治疗近视眼安全性的探讨[J]. 中华眼科杂志, 2010, 46(3): 209-213.
[15]  Zhong, Y., Chen, Z., Xue, F., et al. (2014) Corneal Power Change Is Predictive of Myopia Progression in Orthokeratology. Optometry and Vision Science, 91, 404-411.
https://doi.org/10.1097/OPX.0000000000000183
[16]  Wang, J., Li, Y., Jin, Y., Yang, X., Zhao, C. and Long, Q. (2015) Corneal Biomechanical Properties in Myopic Eyes Measured by a Dynamic Scheimpflug Analyzer. Journal of Ophthalmology, 2015, Article ID: 161869.
https://doi.org/10.1155/2015/161869
[17]  Chen, R., Mao, X., Jiang, J., Shen, M., Lian, Y., Zhang, B. and Lu, F. (2017) The Relationship between Corneal Biomechanics and Anterior Segment Parameters in the Early Stage of Orthokeratology: A Pilot Study. Medicine, 96, e6907.
https://doi.org/10.1097/MD.0000000000006907
[18]  Vinciguerra, R., Ambrósio Jr., R., Elsheikh, A., Roberts, C.J., Lopes, B., Morenghi, E., Azzolini, C. and Vinciguerra, P. (2016) Detection of Keratoconus with a New Biomechanical Index. Journal of Refractive Surgery, 32, 803-810.
https://doi.org/10.3928/1081597X-20160629-01
[19]  Shah, S. and Laiquzzaman, M. (2009) Comparison of Corneal Biomechanics in Pre and Post-Refractive Surgery and Keratoconic Eyes by Ocular Response Analyser. Contact Lens & Anterior Eye, 32, 129-132.
https://doi.org/10.1016/j.clae.2008.12.009
[20]  Ogbuehi, K.C. and Osuagwu, U.L. (2014) Corneal Biomechanical Properties: Precision and Influence on Tonometry. Contact Lens & Anterior Eye, 37, 124-131.
https://doi.org/10.1016/j.clae.2013.09.006
[21]  Nieto-Bona, A., Porras-ángel, P., Ayllón-Gordillo, A.E., Carracedo, G. and Pi?ero, D.P. (2022) Short and Long Term Corneal Biomechanical Analysis after Overnight Orthokeratology. International Journal of Ophthalmology, 15, 1128-1134.
https://doi.org/10.18240/ijo.2022.07.13
[22]  吴波, 杨积文, 杨正菲. 配戴角膜塑形镜对角膜生物力学的影响[C]//中华医学会, 上海市医学会, 中国研究型医院学会. 第十八届国际眼科学学术会议、第十八届国际视光学学术会议、第五届国际角膜塑形学术论坛、中国研究型医院学会眼科学与视觉科学专委会2018学术年会、第十八届中国国际眼科和视光技术及设备展览会暨第十四届中国眼科和视光专业医院展示推广会论文汇编: 2018年卷. 上海: COOC论文集编辑部, 2018: 107.
[23]  Guo, B., Cheung, S., Kojima, R. and Cho, P. (2021) One-Year Results of the Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: A Prospective Randomised Clinical Trial. Ophthalmic and Physiological Optics, 41, 702-714.
https://doi.org/10.1111/opo.12834
[24]  Pauné, J., Fonts, S., Rodríguez, L. and Queirós, A. (2021) The Role of Back Optic Zone Diameter in Myopia Control with Orthokeratology Lenses. Journal of Clinical Medicine, 10, Article No. 336.
https://doi.org/10.3390/jcm10020336
[25]  Zhang, Z., Zhou, J., Zeng, L., Xue, F., Zhou, X. and Chen, Z. (2023) The Effect of Corneal Power Distribution on Axial Elongation in Children Using Three Different Orthokeratology Lens Designs. Contact Lens & Anterior Eye, 46, Article ID: 101749.
https://doi.org/10.1016/j.clae.2022.101749
[26]  Zhang, Z., Chen, Z., Zhou, J., Pauné, J., Xue, F., Zeng, L., Qu, X. and Zhou, X. (2022) The Effect of Lens Design on Corneal Power Distribution in Orthokeratology. Optometry and Vision Science, 99, 363-371.
https://doi.org/10.1097/OPX.0000000000001888
[27]  Zhang, Z., Chen, Z., Chen, Z., Zhou, J., Zeng, L., Xue, F., Qu, X. and Zhou, X. (2022) Change in Corneal Power Distribution in Orthokeratology: A Predictor for the Change in Axial Length. Translational Vision Science & Technology, 11, Article No. 18.
https://doi.org/10.1167/tvst.11.2.18
[28]  Hu, Y., Wen, C., Li, Z., Zhao, W., Ding, X. and Yang, X. (2019) Areal Summed Corneal Power Shift Is an Important Determinant for Axial Length Elongation in Myopic Children Treated with Overnight Orthokeratology. British Journal of Ophthalmology, 103, 1571-1575.
https://doi.org/10.1136/bjophthalmol-2018-312933
[29]  Kang, P. and Swarbrick, H. (2016) The Influence of Different OK Lens Designs on Peripheral Refraction. Optometry and Vision Science, 93, 1112-1119.
https://doi.org/10.1097/OPX.0000000000000889

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133