|
Design 2023
基于感性工学的运动鞋造型智能设计探究
|
Abstract:
本文基于感性工学相关理论,结合生成式人工智能技术在产品造型设计中的应用方式及特点,提出了一种基于感性工学的产品造型智能设计方法,实现设计方案智能生成,为设计师提供灵感造型,拓展优化产品设计流程。首先,提取所研究产品的感性意象与造型样本,解构产品造型特征要素,构建形态要素编码表;其次,通过语义差异实验及数量化I类理论明确形态要素与感性意象间的映射关系,进行对应关系下的产品草图推演;最后,利用生成式人工智能将草图造型与意象词汇进行结合,实现设计方案的智能生成与优化。本研究将感性工学设计流程与生成式人工智能技术相结合,有效结合用户的感知意象需求,拓展造型设计空间,提升整体设计效率,为产品造型感性设计提供了新的思路与借鉴价值。
Based on the theories related to kansei engineering, combined with the application and characteristics of generative artificial intelligence technology in product modeling design, we propose an intelligent design method for product modeling based on perceptual engineering to achieve intelligent generation of design solutions, provide designers with inspirational modeling, and expand and optimize the product design process. Firstly, we extract the perceptual imagery and modeling samples of the studied products, deconstruct the product modeling features and construct a morphological element coding table; secondly, we clarify the mapping relationship between morphological elements and perceptual imagery through semantic difference experiments and quantitative class I theory, and carry out product sketch derivation under the correspondence relation-ship; finally, we use generative artificial intelligence to combine sketch modeling and imagery vocabulary to realize the intelligent design solution Generation and optimization. The combination of kansei engineering design process and generative AI technology effectively combines the user’s perceptual imagery needs, expands the design space and improves the overall design efficiency, providing new ideas and values for the perceptual design of product shape.
[1] | Cao, Y., Li, S., Liu, Y., et al. (2023) A Comprehensive Survey of Ai-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. ArXiv Preprint ArXiv: 2303.04226. |
[2] | 周子洪, 周志斌, 张于扬, 孙凌云. 人工智能赋能数字创意设计: 进展与趋势[J]. 计算机集成制造系统, 2020, 26(10): 2603-2614. https://doi.org/10.13196/j.cims.2020.10.001 |
[3] | 李学超. 基于人工智能的产品设计理论模型研究[J]. 工业设计, 2020(6): 110-111. |
[4] | 唐志良. 发达国家再工业化影响我国制造业转型升级的机制研究[J]. 西部经济管理论坛, 2019, 30(1): 58-70+86. |
[5] | Herrera, F. and Martinez, L. (2000) A 2-Tuple Fuzzy Linguistic Representation Model for Computing with Words. IEEE Transactions on Fuzzy Systems, 8, 746-752. https://doi.org/10.1109/91.890332 |
[6] | Salminen, J., Rao, R.G., Jung, S.G., Chowdhury, S.A. and Jansen, B.J. (2020) Enriching Social Media Personas with Personality Traits: A Deep Learning Approach Using the Big Five Classes. In: Degen, H. and Reinerman-Jones, L., Eds., Artificial Intelligence in HCI. HCII 2020. Lecture Notes in Computer Science, Vol. 12217, Springer, Cham, 101-120.
https://doi.org/10.1007/978-3-030-50334-5_7 |
[7] | Kohonen, T. (1990) The Self-Organizing Map. Proceed-ings of the IEEE, 78, 1464-1480.
https://doi.org/10.1109/5.58325 |
[8] | 张硕, 吴俭涛. 基于BP神经网络的壁挂式充电桩产品形态研究[J]. 图学学报, 2017, 38(6): 865-868. |
[9] | 胡伟峰, 赵江洪. 用户期望意象驱动的汽车造型基因进化[J]. 机械工程学报, 2011, 47(16): 176-181. |
[10] | Dai, Y., Li, Y. and Liu, L.J. (2019) New Product Design with Automatic Scheme Generation. Sensing and Imaging, 20, Article No. 29. https://doi.org/10.1007/s11220-019-0248-9 |
[11] | Liu, V., Vermeulen, J., Fitzmaurice, G. and Matejka, J. (2023) 3DALL-E: Integrating Text-to-Image AI in 3D Design Workflows. Proceedings of the 2023 ACM Designing Interactive Systems Conference, Pittsburgh, 10-14 July 2023, 1955-1977. https://doi.org/10.1145/3563657.3596098 |
[12] | Squalli-Houssaini, H., Duong, N.Q., Gwena?lle, M. and Demarty, C.H. (2018) Deep Learning for Predicting Image Memorability. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, 15-20 April 2018, 2371-2375. https://doi.org/10.1109/ICASSP.2018.8462292 |
[13] | Lu, X., Lin, Z., Shen, X., Mech, R. and Wang, J.Z. (2015) Deep Multi-Patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 990-998. https://doi.org/10.1109/ICCV.2015.119 |
[14] | Dosovitskiy, A., et al. (2021) An Image Is Worth 16x16 Words: Transformers for Image Recognition AT Scale. International Conference on Learning Representations ICLR 2021, Virtual Event, 3-7 May 2021. |
[15] | Radford, A., et al. (2018) Improving Language Understanding by Generative Pre-Training. OpenAI Tech Report. |