全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带Hardy项和一般非线性项分数阶椭圆方程的移动平面法
The Method of Moving Planes for Fractional Order Elliptic Equations with Hardy and General Nonlinear Terms

DOI: 10.12677/AAM.2023.129374, PP. 3804-3813

Keywords: Hardy项,分数阶拉普拉斯方程,移动平面法
Hardy Potential
, Fractional Laplace Equation, The Method of Moving Planes

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文应用直接移动平面法,研究带Hardy项的分数阶拉普拉斯方程的正解的对称性和单调性。首先,关于某一点作Kelvin变换,然后建立了狭窄区域上的极值原理和无穷远处衰减原理,利用这一原理和移动平面法得到正解关于某一点对称并且关于这一点先增后减的结果。
In this paper, we study the symmetry and monotonicity of positive solutions for fractional Laplace equations involving the Hardy potential. Firstly, the Kelvin transform is performed on a certain point, and then we establish a narrow region principle and decay at infinity principle. By using this principle and the moving plane method, the result that the positive solution is symmetric about a certain point and first increases and then decreases is obtained.

References

[1]  Berestycki, H. and Nirenberg, L. (1991) On the Method of Moving Planes and the Sliding Method. Boletim da Sociedade Brasileira de Matemática, 22, 1-37.
https://doi.org/10.1007/BF01244896
[2]  Chen, W., Li, C. and Li, G. (2017) Maximum Principles for a Fully Nonlinear Fractional Order Equation and Symmetry of Solutions. Calculus of Variations and Partial Differential Equations, 56, Article No. 29.
https://doi.org/10.1007/s00526-017-1110-3
[3]  Gidas, B., Ni, W. and Nirenberg, L. (1981) Symmetry of Positive Solutions of Nonlinear Elliptic Equations in Rn, Mathematical Analysis and Applications. Vol. 7a, Advances in Mathe-matics, Supplementary Studies. Academic Press, New York.
[4]  Caffarelli, L. and Silvestre, L. (2007) An Extension Problem Related to the Fractional Laplacian. Communications in Partial Differential Equations, 32, 1245-1260.
https://doi.org/10.1080/03605300600987306
[5]  Chen, W. and Zhu, J. (2016) Indefinite Fractional Elliptic Prob-lem and Liouville Theorems. Journal of Differential Equations, 260, 4758-4785.
https://doi.org/10.1016/j.jde.2015.11.029
[6]  Chen, W., Li, C. and Ou, B. (2005) Classification of Solutions for a System of Integral Equations. Communications in Partial Differential Equations, 30, 59-65.
https://doi.org/10.1081/PDE-200044445
[7]  Ma, L. and Chen, D. (2008) Radial Symmetry and Monotonicity Results for an Integral Equation. Journal of Mathematical Analysis and Applications, 342, 943-949.
https://doi.org/10.1016/j.jmaa.2007.12.064
[8]  Chen, W., Li, C. and Ou, B. (2005) Qualitative Properties of Solu-tions for an Integral Equation. Discrete and Continuous Dynamical Systems, 12, 347-354.
https://doi.org/10.3934/dcds.2005.12.347
[9]  Fall, M.M. (2020) Semilinear Elliptic Equations for the Fractional Laplacian with Hardy Potential. Nonlinear Analysis, 193, Article ID: 111311.
https://doi.org/10.1016/j.na.2018.07.008
[10]  Dai, W. and Qin, G. (2020) Liouville Type Theorems for Elliptic Equations with Dirichlet Conditions in Exterior Domains. Journal of Differential Equations, 269, 7231-7252.
https://doi.org/10.1016/j.jde.2020.05.026
[11]  Jarohs, S. and Weth, T. (2016) Symmetry via Antisymmetric Maxi-mum Principles in Nonlocal Problems of Variable Order. Annali di Matematica, 195, 273-291.
https://doi.org/10.1007/s10231-014-0462-y
[12]  Chen, W., Li, C. and Li, Y. (2017) A Direct Method of Moving Planes for Fractional Laplacian. Advances in Mathematics, 308, 404-437.
https://doi.org/10.1016/j.aim.2016.11.038
[13]  Chen, W., Fang, Y. and Yang, R. (2015) Liouville Theorems In-volving the Fractional Laplacian on a Half Space. Advances in Mathematics, 274, 167-198.
https://doi.org/10.1016/j.aim.2014.12.013
[14]  Bogdan, K., Grzywny, T., Jakubowski, T. and Pilarczyk, D. (2019) Fractional Laplacian with Hardy Potential. Communications in Partial Differential Equations, 44, 20-50.
https://doi.org/10.1080/03605302.2018.1539102
[15]  Cai, M. and Ma, L. (2018) Moving Planes for Nonlinear Frac-tional Laplacian Equation with Negative Powers. Discrete and Continuous Dynamical Systems, 38, 4603-4615.
https://doi.org/10.3934/dcds.2018201
[16]  Wang, G., Ren, X., Bai, Z. and Hou, W. (2019) Radial Symmetry of Standing Waves for Nonlinear Fractional Hardy-Schr?dinger Equation. Applied Mathematics Letters, 96, 131-137.
https://doi.org/10.1016/j.aml.2019.04.024
[17]  Brandle, C., Colorado, E., de Pablo, A. and Sanchez, U. (2013) A Concave-Convex Elliptic Problem Involving the Fractional Laplacian. Proceedings of the Royal Society of Ed-inburgh Section A, 143, 39-71.
https://doi.org/10.1017/S0308210511000175
[18]  叶方琪. 分数阶Hartree方程负解的对称性[J]. 应用数学进展, 2022, 11(3): 980-990.
https://doi.org/10.12677/AAM.2022.113105

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133