全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of Organic Matter Extraction from Moroccan Oil Shale

DOI: 10.4236/msce.2023.118006, PP. 86-108

Keywords: Moroccan Oil Shale, Mineral Matter, Sub/Supercritical Extraction, Nature of Solvent, Phenol

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study focuses on investigating the effect of various solvents on the supercritical extraction of organic matter from Moroccan oil shales, with the goal of determining the optimal operating conditions that result in a high yield of high-quality oil rich in aromatic compounds. The results of this study demonstrate that the extraction yield and quality of the extracted oil heavily depend on the chosen operating conditions for supercritical or subcritical extraction of organic matter from oil shale. Additionally, the study found that phenol can effectively degrade oil shale and enable extraction of nearly all the organic matter, even under mild conditions (T = 390˚C, P = 1.2 MPa, Time = 2.5 h. Furthermore, the oils obtained through this extraction process are of high quality, with a rich content of maltenes, and a higher concentration of aromatic compounds and lower levels of sulfur than those obtained using other solvents.

References

[1]  Abourriche, A., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., Alami, J. and Hannache, H. (2022) Effect of Processing Conditions on the Improvement of Properties and Recovering Yield of Moroccan Oil Shale. Oil Shale, 39, 44-61.
https://doi.org/10.3176/oil.2022.1.04
[2]  Oumam, M., Abourriche, A., Mouiya, M., Mansouri, S., Benhammou, Abouliatim, A., Nibou, L., Smith, A. and Hannache, H. (2020) Comparison of Chemical and Physical Activation Processes at Obtaining Adsorbents from Moroccan Oil Shale. Oil Shale, 37, 139-157.
https://doi.org/10.3176/oil.2020.2.04
[3]  Mouiya, M., Abourriche, A., Oumam, M., Benhammou, A., El hafiane, Y., Abouliatim, Y. and Hannache, H. (2017) Porous Ceramic from Moroccan Natural Phosphate and Raw Clay for Microfiltration Applications. Journal of Desalination and Water Treatment, 83, 277-280.
https://doi.org/10.5004/dwt.2017.20832
[4]  Mouiya, M., Bouazizi, A., Abourriche, A., El Khessaimi, Y., Benhammou, A., El hafiane, Y., Taha, Y., Oumam, M., Smith, A. and Hannache, H. (2019) Effect of Sintering Temperature on the Microstructure and Mechanical Behavior of Porous Ceramics Made from Clay and Banana Peel Powder. Results in Materials, 4, Article ID: 100028.
https://doi.org/10.1016/j.rinma.2019.100028
[5]  Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M. and Pillot, J.P. (2008) New Pitches with Very Significant Maturation Degree Obtained by Supercritical Extraction of Moroccan Oil Shales. The Journal of Supercritical Fluids, 47, 195-199.
https://doi.org/10.1016/j.supflu.2008.07.016
[6]  Wang, Z.M. and Krupnick A. (2013) A Retrospective Review of Shale Gas Development in the United States: What Led to the Boom. Resources for the Future, Washington DC.
[7]  Zou, M., Xie, L., Liu, Y., Guan, F., Han, C. and Ding, K. (2020) Soils Developed from Dolomitic Shale in the Yichang Area, China and Adsorption Characteristics for Phenol. Open Journal of Yangtze Oil and Gas, 5, 145-164.
https://doi.org/10.4236/ojogas.2020.54012
[8]  Christopher, S. and Kulander, A. (2013) Out through the in Door-Shale Gas Set to Reverse the Direction of LNG Sales in America. LSU Journal of Energy Law and Resources, 2, 204-237.
http://digitalcommons.law.lsu.edu/jelr/vol2/iss2/4
[9]  Torrente, M.C. and Galan, M.A. (2011) Extraction of Kerogen from Oil Shale (Puertollano, Spain) with Supercritical Toluene and Methanol Mixtures. Industrial & Engineering Chemistry Research, 50, 1730-1738.
https://doi.org/10.1021/ie1004509
[10]  Galindo, C., Mougin, L., Fakhi, S., Nourreddine, A., Lamghari, A. and Hannache, H. (2007) Distribution of Naturally Occurring Radionuclides (U, Th) in Timahdit Black Shale (Morocco). Journal of Environmental Radioactivity, 92, 41-54.
https://doi.org/10.1016/j.jenvrad.2006.09.005
[11]  Yan, X.Y. (2023) Main Controlling Factors of Shale Oil Enrichment in Yanchang Formation of Yan’an Exploration Area. Open Access Library Journal, 10, 1-8.
[12]  Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M. and Pillot, J.P. (2009) Effect of Toluene Proportion on the Yield and Composition of Oil Obtained by Supercritical Extraction of Moroccan Oil Shale. The Journal of Supercritical Fluids, 51, 24-28.
https://doi.org/10.1016/j.supflu.2009.07.003
[13]  El harfi, K., Bennouna, C., Mokhlisse, A., Ben chanaa, M., Lemée, L., Joffre, J. and Amblès, A. (2000) Yields and Composition of Oil Obtained by Isothermal Pyrolysis of the Moroccan (Tarfaya) Oil Shales with Steam or Nitrogen as Carrier Gas. Journal of Analytical and Applied Pyrolysis, 56, 207-218.
https://doi.org/10.1016/S0165-2370(00)00095-4
[14]  Abourriche, A.K., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., El Hafiane, Y., Abourriche, A.M., Pailler, R. and Naslain, R. (2013) Comparative Studies on the Yield and Quality of Oils Extracted from Moroccan Oil Shale. The Journal of Supercritical Fluids, 84, 98-104.
https://doi.org/10.1016/j.supflu.2013.09.018
[15]  Aboulkas, A., Makayssi, T., Bilali, L., El harfi, K., Nadifiyine, M. and Benchanaa, M. (2012) Co-Pyrolysis of Oil Shale and Plastics: Influence of Pyrolysis Parameters on the Product Yields. Fuel Processing Technology, 96, 209-213.
https://doi.org/10.1016/j.fuproc.2011.12.001
[16]  Oliveira, J.V., Vale, M.G.R. and Caramao, E.B. (1997) Supercritical Fluid Extractionof a High-Ash Brazilian Coal: Extraction with Pure Ethanol and Isopropanol and Their Aqueous Solutions. Fuel, 76, 585-591.
https://doi.org/10.1016/S0016-2361(97)00060-4
[17]  Al-Ayed, O., Suliman, M.R. and Rahman, N.A. (2010) Kinetic Modeling of Liquid Generation from Oil Shale in Fixed Bed Retort. Applied Energy, 87, 2273-2277.
https://doi.org/10.1016/j.apenergy.2010.02.006
[18]  Fahmy, T.M., Paulaitis, M.E., Johnson, D.M. and McNally, M.E.P. (1993) Modifier Effects in the Supercritical Fluid Extraction of Solutes from Clay, Soil, and Plant Materials. Analytical Chemistry, 65, 1462-1469.
https://doi.org/10.1021/ac00058a026
[19]  John, J., Hawthorms, S.B., Miller, D.J. and Pawllszym, J. (1994) Role of Modifiers for Analytical-Scale Supercritical Fluid Extraction of Environmental Samples. Analytical Chemistry, 66, 909-916.
https://doi.org/10.1021/ac00078a024
[20]  Lanças, F.M. and Rissato, S.R. (1998) Influence of Temperature, Pressure, Modifier, and Collection Mode on Supercritical CO2 Extraction Efficiencies of Diuron from Sugar Cane and Orange Samples. Journal of Microcolumn Separations, 10, 473-478.
https://doi.org/10.1002/(SICI)1520-667X(1998)10:6<473::AID-MCS2>3.0.CO;2-D
[21]  Lanças, F.M, Queiroz, M.E.C. and Silva, I.C.E. (1994) Seed Oil Extraction with Supercritical Carbon Dioxide Modified with Pentane. Chromatographia, 39, 687-692.
https://doi.org/10.1007/BF02274584
[22]  Lanças, F.M., Martins, B.S. and Matta, M.H.R. (1990) Supercritical Fluid Extraction (SFE) Using an Inexpensive ‘Home Made’ System. Journal of High Resolution Chromatography, 13, 838-839.
https://doi.org/10.1002/jhrc.1240131210
[23]  Lanças, F.M., Rissato, S.R. and Galhiane, M.S. (1996) Supercritical Fluid Extraction of Chlorothalonil Residues from Apples. Chromatographia, 42, 547-550.
https://doi.org/10.1007/BF02290289
[24]  Yang, Y., Gharaibeh, A., Hawthorne, S.B. and Miller, D.J. (1995) Combined Temperature/Modifier Effects on Supercritical CO2 Extraction Efficiencies of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Analytical Chemistry, 67, 641-646.
https://doi.org/10.1021/ac00099a023
[25]  de Castro, M.D.L. and Tena, M.T. (1996) Strategies for Supercritical Fluid Extraction of Polar and Ionic Compounds. Analytical Chemistry, 15, 32-37.
https://doi.org/10.1016/0165-9936(96)88035-6
[26]  Yang, Q., Guo, M. and Guo, W. (2021) Effects of Associated Minerals on the Co-Current Oxidizing Pyrolysis of Oil Shale in a Low-Temperature Stage. American Chemical Society, 37, 23988-23997.
https://doi.org/10.1021/acsomega.1c03098
[27]  Kök, M.V. and Pamir, M.R. (2000) Comparative Pyrolysis and Combustion Kinetics of Oil Shales. Journal of Analytical and Applied Pyrolysis, 55, 185-194.
https://doi.org/10.1016/S0165-2370(99)00096-0
[28]  El harfi, K., Bennouna, C., Mokhlisse, A. and Ben chanaa, M. (2000) Yields and Composition of Oil Obtained by Isothermal Pyrolysis of the Moroccan (Tarfaya) Oil Shales with Steam or Nitrogen as Carrier Gas. Journal of Analytical and Applied Pyrolysis, 56, 207-218.
https://doi.org/10.1016/S0165-2370(00)00095-4
[29]  Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M. and Pillot, J.P. (2005) Autoclave Recovery of Organic Matter from Moroccan Oil Shales by Phenol under Sub-Critical Conditions. Annales de Chimie Science des Matériaux, 30, 1-17.
https://doi.org/10.3166/acsm.30.1-17
[30]  Bekri, O. and Ziyad, M. (1991) Synthesis of Oil Shale Research and Development Activities in Morocco. Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, 13-15 November 1991, 437-443.
[31]  Rose, H.R., Smith, D.R. and Vassallo, A.M. (1994) An Investigation of Thermal Transformations of the Products of Oil Shale Demineralization Using Infrared Emission Spectroscopy. Energy & Fuels, 7, 319-325.
https://doi.org/10.1021/ef00038a024
[32]  Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M. and Pillot, J.P. (2005) Effect of Mineral Matter and Phenol in Supercritical Extraction of Oil Shale with Toluene. Journal de Physique IV, 123, 23-27.
https://doi.org/10.1051/jp4:2005123003
[33]  Abourriche, A., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., Alami, J. and Hannache, H. (2023) The Effect of Various Parameters on the Supercritical Extraction of Moroccan Oil Shales: Application in the Elaboration of Carbon Foams and Graphitizable Carbons. Oil Shale, 40, 44-61.
https://doi.org/10.3176/oil.2023.1.03
[34]  Alanfnan, S. (2021) Petrophysics of Kerogens Based on Realistic Structures. American Chemical Society, 14, 9549-9558.
https://doi.org/10.1021/acsomega.1c00018
[35]  Marshall, C.P., Wilson, M.A., Hartung-Kagi, B. and Hart, G. (2001) Potential of Emission Fourier Transform Infrared Spectroscopy for in Situ Evaluation of Kerogen in Source Rocks during Pyrolysis. Chemical Geology, 175, 623-633.
https://doi.org/10.1016/S0009-2541(00)00383-1
[36]  Cole-Clarke, A. and Vassallo, A.M. (1992) Infrared Emission Spectroscopy of Coal. Fuel, 71, 469-470.
https://doi.org/10.1016/0016-2361(92)90041-L
[37]  Guo, W., Yang, Q., Zhang, X., Xu, S., Deng, S. and Li, Q. (2021) Thermal Behavior of Oil Shale Pyrolysis under Low-Temperature Co-Current Oxidizing Conditions. American Chemical Society, 28, 18074-18083.
https://doi.org/10.1021/acsomega.1c01875
[38]  Nguyen, V.D. (1990) Pyrolysis of Stuart Oil Shale in the Presence of Recycled Shale. Fuel, 69, 497-501.
https://doi.org/10.1016/0016-2361(90)90321-G
[39]  Oumam, M. (2000) New Adsorbent Materials Obtained from Tarafaya Oil Shale. PhD of Chemical Engineering, Faculty of Sciences Ben M’sik, Morocco, 2000.
[40]  Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M. and Pillot, J.P. (2004) New Pitches with Enhanced Graphitization Ability Obtained from Moroccan Oil Shales. Journal of Analytical and Applied Pyrolysis, 71, 935-944.
https://doi.org/10.1016/j.jaap.2003.12.004
[41]  Leach, B.E. (1977) Disproportionation of Highly Alkylated Phenols with Phenol. Continental Oil Co., USA, Patent No. 77-852389 [4125736].
[42]  Koel, M., Ljovin, S., Hollis, K. and Rubin, J. (2001) Using Neoteric Solvents in Oil Shale Studies. Pure and Applied Chemistry, 73, 153-159.
https://doi.org/10.1351/pac200173010153
[43]  Wu, Y., Li, W., Vovers, J., Lu, H.T., Stevens, G.W. and Mumford, K.A. (2022) Investigation of Green Solvents for the Extraction of Phenol and Natural Alkaloids: Solvent and Extractant Selection. Chemical Engineering Journal, 442, Article ID: 136054.
https://doi.org/10.1016/j.cej.2022.136054
[44]  Wan, J., Zhao, J., Zhang, X., Fan, H., Zhang, J., Hu, D., Jin, P. and Wang, D.Y. (2020) Epoxy Thermosets and Materials Derived from Bio-Based Monomeric Phenols: Transformations and Performances. Progress in Polymer Science, 108, Article ID: 101287.
https://doi.org/10.1016/j.progpolymsci.2020.101287
[45]  Sahoo, C.K., Khatua, H.K., Bhaskar, J. and Ramana, D.V. (2019) Effect of the Critical Solution Temperature of a Partial Miscible Phenol-Water Solution with Addition of Potassium Chloride. International Journal of Pharmaceutical Sciences Review and Research, 54, 109-112.
[46]  Zhuang, M.S. and Thies, M.C. (2000) Extraction of Petroleum Pitch with Supercritical Toluene: Experiment and Prediction. Energy Fuels, 14, 70-75.
https://doi.org/10.1021/ef990141q
[47]  Canel, M. and Missal, P. (1994) Extraction of Solid Fuels with Sub- and Supercritical Water. Fuel, 73, 1776-1780.
https://doi.org/10.1016/0016-2361(94)90167-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133